Giải Toán 8 trang 69 Tập 2 Cánh diều

Với Giải Toán 8 trang 69 Tập 2 trong Bài 4: Tính chất đường phân giác của tam giác Toán 8 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 8 dễ dàng làm bài tập Toán 8 trang 69.

Giải Toán 8 trang 69 Tập 2 Cánh diều

Quảng cáo

Bài 1 trang 69 Toán 8 Tập 2: Cho tam giác ABC có ba đường phân giác AD, BE, CF. Biết AB = 4, BC = 5, CA = 6. Tính BD, CE, AF.

Lời giải:

Bài 1 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Áp dụng tính chất đường phân giác cho tam giác ABC, ta có:

DBDC=ABAC (do AD là đường phân giác của góc BAC)

Suy ra DBBCDB=ABAC hay BD5BD=46

Do đó 6BD = 4(5 – BD)

          6BD = 20 – 4BD

          6BD + 4BD = 20

          10BD = 20

          BD = 2.

Quảng cáo

ECEA=BCBA (do BE là đường phân giác của góc ABC)

Suy ra ECACEC=BCBA hay CE6CE=54

Do đó 4CE = 5(6 – CE)

          4CE = 30 – 5CE

          4CE + 5CE = 30

          9CE = 30

          CE=309=103

FAFB=CACB (do CF là đường phân giác của góc ACB)

Suy ra FAABFA=CACB hay AF4AF=65

Do đó 5AF = 6(4 – AF)

          5AF = 24 – 6AF

          5AF + 6AF = 24

          11AF = 24

         AF=2411.

Quảng cáo

Bài 2 trang 69 Toán 8 Tập 2: Cho tam giác ABC có đường trung tuyến AM. Tia phân giác của góc ABC lần lượt cắt các đoạn thẳng AM, AC tại điểm D, E. Chứng minh ECEA=2DMDA.

Lời giải:

Bài 2 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Theo tính chất đường phân giác trong tam giác, ta có:

ECEA=BCBA (do BE là đường phân giác của góc ABC trong ∆ABC);

DMDA=BMBA (do BD là đường phân giác của góc ABM trong ∆ABM).

Mà BC = 2BM (do AM là đường trung tuyến của ∆ABC)

Suy ra ECEA=BCBA=2BMBA=2DMDA.

Vậy ECEA=2DMDA.

Quảng cáo

Bài 3 trang 69 Toán 8 Tập 2: Quan sát Hình 43 và chứng minh DBDC:EBEG=AGAC.

Bài 3 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

Bài 3 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

DBDC=ABAC (do AD là đường phân giác của góc BAC trong ∆ABC);

EBEG=ABAG (do AE là đường phân giác của góc BAG trong ∆ABG).

Suy ra: DBDC:EBEG=ABAC:ABAG=ABACAGAB=AGAC

Vậy DBDC:EBEG=AGAC.

Theo tính chất đường phân giác trong tam giác, ta có:

Bài 4 trang 69 Toán 8 Tập 2: Cho hình thoi ABCD (Hình 44). Điểm M thuộc cạnh AB thoả mãn AB = 3AM. Hai đoạn thẳng AC và DM cắt nhau tại N. Chứng minh ND = 3MN.

Bài 4 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

Bài 4 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Do ABCD là hình thoi nên AD = AB và AC là đường phân giác của góc BAC.

Xét ∆AMD có AN là đường phân giác góc MAD nên NDNM=ADAM

Hay NDNM=AD13AB (vì AB = 3AM)

Do đó NDNM=AB13AB=3

Vậy ND = 3MN.

Bài 5 trang 69 Toán 8 Tập 2: Cho tam giác ABC vuông tại A có AB = 3, AC = 4, AD là đường phân giác. Tính:

a) Độ dài các đoạn thẳng BC, DB, DC;

b) Khoảng cách từ điểm D đến đường thẳng AC;

c) Độ dài đường phân giác AD.

Lời giải:

Bài 5 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

a) Xét tam giác ABC vuông tại A, theo định lí Pythagore, ta có:

BC2 = AB2 + AC2 = 32 + 42 = 25 = 52

Suy ra BC = 5.

Theo tính chất đường phân giác trong tam giác, ta có: DBDC=ABAC (do AD là đường phân giác của góc BAC)

Suy ra DBBCDB=ABAC hay DB5DB=34

Do đó 4DB = 3(5 – DB)

          4DB = 15 – 3DB

          4DB + 3DB = 15

          7DB = 15

          DB=157

Khi đó DC=BCDB=5157=207

Vậy BC=5;  DB=157;  DC=207.

b) Kẻ DH ⊥ AC (H ∈ AC).

Suy ra DH // AB (cùng vuông góc với AC)

Áp dụng hệ quả của định lí Thalès trong tam giác ABC với DH // AB, ta có:

DHBA=CDCB hay DH3=2075

Suy ra DH=32075=127

Vậy khoảng cách từ điểm D đến đường thẳng AC là DH=127.

c) Xét tam giác ABC với DH // AB, ta có: AHAC=BDBC (hệ quả của định lí Thalès)

Hay AH4=1575, suy ra AH=41575=127

Xét tam giác AHD vuông tại H, ta có: AD2 = AH2 + DH2 (định lí Pythagore)

Suy ra AD2=1272+1272=28849

Do đó AD=28849=144249=12272=1227

Vậy độ dài đường phân giác AD là 1227.

Bài 6 trang 69 Toán 8 Tập 2: Cho tứ giác ABCD với các tia phân giác của các góc CAD và CBD cùng đi qua điểm E thuộc cạnh CD (Hình 45 . Chứng minh AD.BC = AC.BD.

Bài 6 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

Bài 6 trang 69 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Theo tính chất đường phân giác trong hai tam giác ACD và BCD, ta có:

ECED=ACAD (do AE là đường phân giác của góc CAD);

ECED=BCBD (do BE là đường phân giác của góc CBD).

Suy ra ACAD=BCBD

Vậy AD.BC = AC.BD.

Lời giải bài tập Toán 8 Bài 4: Tính chất đường phân giác của tam giác hay khác:

Xem thêm lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải bài tập Toán 8 Cánh diều hay nhất, chi tiết của chúng tôi được biên soạn bám sát sgk Toán 8 Cánh diều (Tập 1 & Tập 2) (NXB ĐH Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 8 Cánh diều khác
Tài liệu giáo viên