Giải Toán 8 trang 72 Tập 1 Kết nối tri thức
Với Giải Toán 8 trang 72 Tập 1 trong Bài 14: Hình thoi và hình vuông Toán 8 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 8 dễ dàng làm bài tập Toán 8 trang 72.
Giải Toán 8 trang 72 Tập 1 Kết nối tri thức
Bài 3.30 trang 72 Toán 8 Tập 1: Cho tam giác ABC, D là một điểm nằm giữa B và C. Qua D kẻ các đường thẳng song song với AB, AC, chúng cắt các cạnh AC, AB lần lượt tại E, F.
a) Tứ giác AEDF là hình gì? Vì sao?
b) Nếu tam giác ABC cân tại A thì điểm D ở vị trí nào trên cạnh BC để tứ giác AEDF là hình thoi?
c) Nếu tam giác ABC vuông tại A thì tứ giác AEDF là hình gì?
d) Nếu tam giác ABC vuông cân tại A thì điểm D ở vị trí nào trên cạnh BC để AEDF là hình vuông?
Lời giải:
a) Tứ giác AEDF có AE // DF; AF // DE (giả thiết).
Suy ra tứ giác AEDF là hình bình hành.
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A.
Mà tam giác ABC cân tại A nên đường phân giác AD đồng thời là đường trung tuyến
Do đó D là trung điểm của BC.
Ngược lại, nếu D là trung điểm của cạnh BC của tam giác ABC cân tại A thì hình bình hành AEDF có đường chéo AD là đường phân giác của góc A nên AEDF là hình thoi.
c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì hình bình hành có một góc vuông là hình chữ nhật).
d) Tam giác ABC vuông cân tại A tức là vừa vuông tại A vừa cân tại A.
Theo câu c, nếu ΔABC vuông tại A thì AEDF là hình chữ nhật.
Để hình chữ nhật AEDF là hình vuông thì tức nó cũng là hình thoi.
Theo câu b, AEDF là hình thoi nếu D là trung điểm của cạnh BC của tam giác ABC cân tại A.
Vậy nếu tam giác ABC vuông cân tại A thì để AEDF là hình vuông thì điểm D là trung điểm của BC.
Bài 3.31 trang 72 Toán 8 Tập 1: Chứng minh rằng các trung điểm của bốn cạnh trong một hình chữ nhật là các đỉnh của một hình thoi.
Lời giải:
Giả sử có hình chữ nhật ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA.
Ta cần chứng minh EFGH là hình thoi. Thật vậy:
Do ABCD là hình chữ nhật nên AD = BC.
H là trung điểm của AD nên AH = DH = AD ;
F là trung điểm của BC nên BF = CF = BC
Do đó AH = DH = BF = CF.
Xét AHE và BFE có:
;
AE = BE (do E là trung điểm của AB);
AH = BF (chứng minh trên).
Do đó AHE = BFE (hai cạnh góc vuông)
Suy ra HE = FE (hai cạnh tương ứng).
Tương tự, ta cũng có:
• BEF = CGF (hai cạnh góc vuông), suy ra EF = GF (hai cạnh tương ứng).
• CGF = DGH (hai cạnh góc vuông), suy ra GF = GH (hai cạnh tương ứng).
Từ đó ta có EF = FG = GH = HE
Do đó tứ giác EFHG là hình thoi.
Bài 3.32 trang 72 Toán 8 Tập 1: Chứng minh rằng các trung điểm của bốn cạnh trong một hình thoi là các đỉnh của một hình chữ nhật.
Lời giải:
Giả sử có hình thoi ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA.
Ta cần chứng minh EFGH là hình chữ nhật. Thật vậy:
Do ABCD là hình thoi nên AB = BC = CD = DA.
Do E, H lần lượt là trung điểm của AB, AD nên AH = DH = AE = BE.
Tam giác AHE có AH = AE nên là tam giác cân tại A, suy ra .
Mà
Suy ra .
Tương tự, ta có tam giác DHG cân tại D nên
Mặt khác, do ABCD là hình thoi nên AB // CD, suy ra
Khi đó
Mà
Suy ra
Chứng minh tương tự như trên ta cũng có .
Tứ giác EFGH có bốn góc vuông nên là hình chữ nhật.
Bài 3.33 trang 72 Toán 8 Tập 1: Cho hình chữ nhật ABCD có chu vi bằng 36 cm. Gọi M là trung điểm của cạnh BC. Biết rằng MA ⊥ MD. Tính độ dài các cạnh của hình chữ nhật ABCD (H.3.56).
Lời giải:
Gọi I là trung điểm của AD.
Khi đó, MI = mà M là trung điểm của BC nên MI = AB.
Suy ra AB = nên AD = 2AB.
Mà AB + AD = = 18 (cm).
Suy ra AB + 2AB = 18
Hay 3AB = 18
Do đó AB = 6 (cm).
Suy ra AD = 2AB = 2 . 6 = 12 (cm).
Vậy độ dài các cạnh của hình chữ nhật ABCD là AB = CD = 6 cm; AD = BC = 12 cm.
Lời giải bài tập Toán 8 Bài 14: Hình thoi và hình vuông hay khác:
Xem thêm lời giải bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Kết nối tri thức
- Giải SBT Toán 8 Kết nối tri thức
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Giải lớp 8 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải bài tập Toán 8 hay nhất, chi tiết của chúng tôi được biên soạn bám sát sgk Toán 8 Kết nối tri thức (Tập 1 & Tập 2) (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) - KNTT
- Giải sgk Toán 8 - KNTT
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT