Bài 9.15 trang 79 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Giải Toán 9 Luyện tập chung (trang 79) - Kết nối tri thức

Bài 9.15 trang 79 Toán 9 Tập 2: Cho tam giác đều ABC có cạnh bằng 3 cm và nội tiếp đường tròn (O) như Hình 9.26.

chương 09

a) Tính bán kính R của đường tròn (O).

b) Tính diện tích hình viên phân giới hạn bởi dây cung BC và cung nhỏ BC.

Quảng cáo

Lời giải:

a) Đường tròn (O) ngoại tiếp tam giác đều ABC nên có bán kính là R=333=3 (cm).

b)

chương 09

Do ∆ABC là tam giác đều nên BAC^=ABC^=60°.

Xét đường tròn (O) có BAC^, BOC^ lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung BC nên BAC^=12BOC^, suy ra BOC^=2BAC^=260°=120°.

Do đó cung nhỏ BC có số đo bằng 120°.

Diện tích hình quạt tròn bán kính R=3 cm ứng với cung nhỏ BC có số đo bằng 120° là:

Sq=nπR2360=120π32360=π (cm2).

Gọi H là giao điểm của AO và BC. Khi đó AH vừa là đường trung trực, vừa là đường phân giác, cũng là đường cao của tam giác.

Vì BO là phân giác của góc ABC nên OBH^=12ABC^=1260°=30°.

Xét ∆OBH vuông tại H, có:

OH=OBsinOBH^=Rsin30°=32 (cm).

Diện tích của tam giác OBC là:

SOBC=12OHBC=12323=334 (cm2).

Gọi S là diện tích viên phân giới hạn bởi dây cung BC và cung nhỏ BC.

Ta có: S=SOBCSq=π334 (cm2).

Vậy hình viên phân giới hạn bởi dây cung BC và cung nhỏ BC có diện tích bằng π334 (cm2).

Quảng cáo

Lời giải bài tập Toán 9 Luyện tập chung (trang 79) hay, chi tiết khác:

Quảng cáo

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải sgk Toán 9 Tập 1 & Tập 2 của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Kết nối tri thức (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Kết nối tri thức khác
Tài liệu giáo viên