Lý thuyết Hàm số lớp 10 (hay, chi tiết)
Bài viết Lý thuyết Hàm số lớp 10 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Hàm số.
Lý thuyết Hàm số
Bài giảng: Bài 1: Hàm số - Thầy Lê Thành Đạt (Giáo viên VietJack)
I. ÔN TẬP VỀ HÀM SỐ
1. Hàm số. Tập xác định của hàm số
Giả sử có hai đại lượng biếnthiên x và y, trong đó x nhận giá trị thuộc tập số D.
Nếu với mỗi giá trị của x thuộc tập D có một và chỉ một giá trị tương ứng của x thuộc tập số thực R thì ta có một hàm số.
Ta gọi x là biến số và y là hàm số của x.
Tập hợp D được gọi là tập xác định của hàm số.
2. Cách cho hàm số
Một hàm số có thể được cho bằng các cách sau.
Hàm số cho bằng bảng
Hàm số cho bằng biểu đồ
Hàm số cho bằng công thức
Tập xác định của hàm số y = f(x) là tập hợp tất cả các số thực x sao cho biểu thức f(x) có nghĩa.
3. Đồ thị của hàm số
Đồ thị của hàm số y = f(x) xác định trên tập D là tập hợp tất cả các điểm M(x,f(x)) trên mặt phẳng tọa độ với x thuộc D.
II. SỰ BIẾN THIÊN CỦA HÀM SỐ
1. Ôn tập
Hàm số y = f(x) gọi là đồng biến (tăng) trên khoảng (a ; b) nếu
∀x1, x2 ∈ (a ; b) : x1 < x2 => f(x1) < f(x2)
Hàm số y = f(x) gọi là nghịch biến (giảm) trên khoảng (a ; b) nếu :
∀x1, x2 ∈ (a ; b) : x1 < x2 => f(x1) > f(x2)
2. Bảng biến thiên
Xét chiều biến thiên của một hàm số là tìm các khoảng đồng biến và các khoảng nghịch biến của nó. Kết quả xét chiều biến thiên được tổng kết trong một bảng gọi là bảng biến thiên.
Ví dụ. Dưới đây là bảng biến thiên của hàm số y = x2.
Hàm số y = x2 xác định trên khoảng (hoặc trong khoảng) ( –∞ ; +∞) và khi x dần tới +∞ hoặc dần tới –∞ thì y đều dần tới +∞.
Tại x = 0 thì y = 0.
Để diễn tả hàm số nghịch biến trên khoảng (–∞ ; 0) ta vẽ mũi tên đi xuống (từ +∞ đến 0).
Để diễn tả hàm số đồng biến trên khoảng (0 ; +∞) ta vẽ mũi tên đi lên (từ 0 đến +∞).
Nhìn vào bảng biến thiên, ta sơ bộ hình dung được đồ thị hàm số (đi lên trong khoảng nào, đi xuống trong khoảng nào).
III. TÍNH CHẴN LẺ CỦA HÀM SỐ
1. Hàm số chẵn, hàm số lẻ
Hàm số y = f(x) với tập xác định D gọi là hàm số chẵn nếu
∀x ∈ D thì – x ∈ D và f( –x) = f(x)
Hàm số y = f(x) với tập xác định D gọi là hàm số lẻ nếu
∀x ∈ D thì – x ∈ D và f(–x) = – f(x)
2. Đồ thị của hàm số chẵn, hàm số lẻ
Đồ thị của một hàm số chẵn nhận trục tung làm trục đối xứng.
Đồ thị của một hàm số lẻ nhận gốc tọa độ là tâm đối xứng.
Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:
- Lý thuyết Hàm số y = ax + b
- Lý thuyết Hàm số bậc hai
- Lý thuyết Tổng hợp chương Hàm số bậc nhất và bậc hai
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều