Giải Vở bài tập Toán 7 trang 117 Tập 2 Cánh diều

Với Giải VBT Toán 7 trang 117 Tập 2 trong Bài 12: Tính chất ba đường trung trực của tam giác Vở bài tập Toán lớp 7 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong VBT Toán 7 trang 117.

Giải VBT Toán 7 trang 117 Tập 2 Cánh diều

Quảng cáo

Câu 4 trang 117 vở bài tập Toán lớp 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I. Biết rằng I cũng là giao điểm của ba đường trung trực của tam giác ABC. Chứng minh tam giác ABC đều.

Lời giải:

Tam giác ABC có ba đường phân giác cắt nhau tại I. Biết rằng I cũng là giao điểm

Do I thuộc đường thẳng trung trực của đoạn thẳng BC nên IB = IC.

Suy ra tam giác IBC là tam giác cân tại I.

Suy ra IBC^ = ICB^ (hai góc đáy của tam giác cân).

Vì BI là tia phân giác góc B nên ABC^ = 2 IBC^.

Quảng cáo

Vì CI là tia phân giác góc C nên ACB^ = 2ICB^.

Suy ra ABC^ = ACB^. Chứng minh tương tự ta cũng có BAC^ = BCA^.

Do đó ABC^ = ACB^ = BAC^. Vậy tam giác ABC là tam giác đều.

Câu 5 trang 117 vở bài tập Toán lớp 7 Tập 2: Tam giác ABC. Đường trung trực của hai cạnh AB và AC cắt nhau tại O nằm trong tam giác. M là trung điểm của BC. Chứng minh:

a) OM BC;

b) MOB^ = MOC^.

Lời giải:

Tam giác ABC. Đường trung trực của hai cạnh AB và AC cắt nhau tại O

a) Vì ba đường trung trực của tam giác ABC cùng đi qua một điểm nên giao điểm O của hai đường trung trực của các cạnh AB và AC cũng thuộc đường trung trực của cạnh BC.

Vì BM = CM nên M thuộc đường trung trực của đoạn thẳng BC.

Quảng cáo

Suy ra OM là trung trực của đoạn thẳng BC hay OM ⊥ BC.

b) Xét hai tam giác vuông OMB và OMC, ta có

OM là cạnh chung, MB = MC (giả thiết)

Suy ra ∆OMB = ∆OMC (hai cạnh góc vuông).

Do đó MOB^ = MOC^ (hai góc tương ứng).

Câu 6 trang 117 vở bài tập Toán lớp 7 Tập 2: Tam giác ABC có ba đường trung tuyến AM, BN, CP cắt nhau tại G. Biết rằng G cũng là giao điểm ba đường trung trực của tam giác MNP. Chứng minh tam giác ABC đều.

Lời giải:

Tam giác ABC có ba đường trung tuyến AM, BN, CP cắt nhau tại G

Do G là giao điểm các đường trung trực của tam giác MNP nên GM = GN = GP.

Quảng cáo

Do G là trọng tâm tam giác ABC nên GA = 2GM, GB = 2GN, GC = 2GP

Suy ra GA = GB = GC.

Do GB = GC, MB = MC nên GM là đường trung trực của đoạn thẳng BC. Mà A thuộc đường thẳng GM nên AB = AC.

Do GC = GA, NC = NA nên GN là đường trung trực của đoạn thẳng CA. Mà B thuộc đường thẳng GN nên BA = BC

Suy ra AB = AC = BC. Vậy tam giác ABC là tam giác đều.

Lời giải Vở bài tập Toán 7 Bài 12: Tính chất ba đường trung trực của tam giác Cánh diều hay khác:

Xem thêm lời giải Vở bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải VBT Toán 7 Cánh diều của chúng tôi được biên soạn bám sát Vở bài tập Toán 7 Tập 1 & Tập 2 bộ sách Cánh diều (NXB Đại học Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Cánh diều khác
Tài liệu giáo viên