Cho tam giác ABC cân tại A. Gọi H là chân đường cao hạ từ A

Giải vở thực hành Toán 8 Bài tập cuối chương 3 - Kết nối tri thức

Bài 8 trang 68 vở thực hành Toán 8 Tập 1: Cho tam giác ABC cân tại A. Gọi H là chân đường cao hạ từ A, D và E lần lượt là trung điểm của AB, AC. Lấy M là điểm trên DH sao cho MD = DH. Chứng minh rằng:

a) Tứ giác ADHE là hình thoi.

b) Tứ giác AHBM là hình chữ nhật.

c) Tứ giác ACHM là hình bình hành.

d) Ba đường thẳng MC, DE, AH đồng quy.

Quảng cáo

Lời giải:

Cho tam giác ABC cân tại A. Gọi H là chân đường cao hạ từ A

(H.3.47). a) Ta có AE = EC, CH = HB HE là đường trung bình của ∆CAB.

HE // AC, HE = 12AC = AD.

Tứ giác ADHE là hình bình hành.

∆ABC cân tại A nên AB = AC.

AE = 12AC = 12AB = AD.

Vậy hình bình hành ADHE có hai cạnh kề nhau bằng nhau nên là hình thoi.

b) Ta có MD = DH, DA = AB nên tứ giác AHBM có hai đường chéo AB và MH cắt nhau tại trung điểm mỗi đường nên là hình bình hành, hơn nữa AHC^=90°, suy ra AHBM là hình chữ nhật.

c) Tứ giác AHBM là hình chữ nhật nên AM // BH, AM = BH.

∆ABC cân tại A, AH BC nên BH = CH.

Tứ giác ACHM có AM // CH, AM = CH nên là hình bình hành.

d) Tứ giác ACHM là hình bình hành nên MC, AH cắt nhau tại trung điểm mỗi đường. Tứ giác ADHE là hình thoi nên AH, DE cắt nhau tại trung điểm mỗi đường.

Vậy MC, DE, AH cắt nhau tại cùng một điểm nên chúng đồng quy.

Quảng cáo

Lời giải vở thực hành Toán 8 Bài tập cuối chương 3 hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải vở thực hành Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải VTH Toán 8 hay nhất, chi tiết của chúng tôi được biên soạn bám sát sách Vở thực hành Toán 8 Kết nối tri thức (Tập 1 & Tập 2) (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 8 Kết nối tri thức khác
Tài liệu giáo viên