Biết rằng (2 + x)^100 = a0 + a1x + a2x^2 + ... + a100x^100

Giải Chuyên đề Toán 10 Bài 4: Nhị thức Newton

Bài 2.18 trang 37 Chuyên đề Toán 10: Biết rằng (2 + x)100 = a0 + a1x + a2x2 + ... + a100x100. Với giá trị nào của k (0 ≤ k ≤ 100) thì ak Iớn nhất?

Quảng cáo

Lời giải:

+) Ta có:

Số hạng chứa xk trong khai triển của (2 + x)100 hay (x +2)100

C100100kxk2100k=C100k2100kxk=2100C100k2kxk.

Vậy hệ số của xk trong khai triển của (x + 2)100 là:

2100C100k2kak=2100C100k2k.

+) Giải bất phương trình: ak ≤ ak + 1 (1).

(1) ⇔ 2100C100k2k2100C100k+12k+1C100k2kC100k+12k+1C100kC100k+12k2k+1

⇔ 100!k!100k!100!k+1!100k1!12

k+1!100k1!k!100k!12k+1100k12

⇔ 2(k + 1) ≤ 100 - k ⇔ 3k ≤ 98 ⇔ k ≤ 32 (vì k là số tự nhiên).

+) Vì ak ≤ ak + 1 ⇔ k ≤ 32 nên ak ≥ ak + 1 ⇔ k ≥ 32

Do đó a1a2...a32a33a34a35...a100.

Ta thấy dấu "=" không xảy ra với bất kì giá trị nào của k.

Do đó a33 là giá trị lớn nhất trong các ak.

Quảng cáo


Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 sách mới các môn học