Chứng minh rằng với mọi số tự nhiên n lớn hơn bằng 1

Giải Chuyên đề Toán 10 Bài 3: Phương pháp quy nạp toán học

Luyện tập 1 trang 27 Chuyên đề Toán 10: Chứng minh rằng với mọi số tự nhiên n ≥ 1, ta có:

1+2+3+...+n = n(n+1)2.

Quảng cáo

Lời giải:

Ta chứng minh bằng quy nạp theo n.

Bước 1. Với n = 1 ta có 1 = 12.

Như vậy khẳng định đúng cho trường hợp n = 1.

Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:

1 + 2 + 3 + ... + k = k(k+1)2.

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:

1 + 2 + 3 +...+ k + (k + 1) =  k+1k+1+12.

Thật vậy, sử dụng giả thiết quy nạp ta có:

1 + 2 + 3 +...+ k + (k + 1)

= kk+12+2k+12=k+1k+22=k+1k+1+12.

Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.

Quảng cáo


Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 sách mới các môn học
Tài liệu giáo viên