Giải SBT Toán 10 trang 93 Tập 1 Cánh diều

Với Giải sách bài tập Toán 10 trang 93 Tập 1 trong Bài 4: Tổng và hiệu của hai vectơ SBT Toán 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 93.

Giải SBT Toán 10 trang 93 Tập 1 Cánh diều

Bài 41 trang 93 SBT Toán 10 Tập 1: Cho hai vectơ a,b khác 0 . Chứng minh rằng nếu hai vectơ cùng hướng thì .|a|+|b|=|a+b|

Quảng cáo

Lời giải:

 Cho hai vectơ a, vectơ b khác vectơ 0 . Chứng minh rằng nếu hai vectơ cùng hướng thì | vectơ a | + | vectơ b | = | vectơ a + vectơ b |

Không mất tính tổng quát ta lấy một điểm A bất kì, vẽ AB=a, BC=b

Vì hai vectơ a,b cùng hướng nên A, B, C thẳng hàng, B nằm giữa A và C.

Ta có: |a|=|AB|=AB,|b|=|BC|=BC

|a|+|b|=AB+BC=AC

|a+b|=|AB+BC|=AC.

Vậy |a|+|b|=|a+b| .

Bài 42 trang 93 SBT Toán 10 Tập 1: Cho hình vuông ABCD cạnh a. Tính |AB+AC| .

Quảng cáo


Lời giải:

 Cho hình vuông ABCD cạnh a. Tính | vectơ AB + vectơ AC |

Lấy E là điểm thỏa mãn ABEC là hình bình hành, gọi M là trung điểm của BC.

Khi đó ta có: AB+AC=AE

|AB+AC|=|AE|=AE

Vì M là trung điểm của BC nên M là trung điểm của AE

⇒ AE = 2AM.

Xét tam giác ABM vuông tại B, có:

AM2 = AB2 + BM2 (định lí pythagoras)

⇔ AM2 = a2 + a22 = a2 + a24 = 5a24

⇔ AM = 5a2

⇒ AE = 2AM = 2.5a2=5a

Vậy AE = 5a .

Bài 43 trang 93 SBT Toán 10 Tập 1: Cho tứ giác ABCD là hình bình hành. Gọi O là giao điểm của hai đường chéo, E là trung điểm của AD, G là giao điểm của BE và AC. Tính:

a) OA+OB+OC+OD ;

b) GA+GB+GD .

Quảng cáo

Lời giải:

 Cho tứ giác ABCD là hình bình hành. Gọi O là giao điểm của hai đường chéo, E là trung điểm của AD

a) Xét hình bình hành ABCD, có O là giao điểm của AC và BD nên O là trung điểm của AC và O là trung điểm của BD.

OA+OC=0OB+OD=0

Ta có: OA+OB+OC+OD

=OA+OC+OB+OD.

=0+0=0

Vậy OA+OB+OC+OD=0 .

b) Xét tam giác ABD, có:

AO là trung tuyến, BE là đường trung tuyến

Mà AO giao với BE tại G nên G là trọng tâm tam giác ABD

GA+GB+GD=0

Vậy GA+GB+GD=0 .

Bài 44 trang 93 SBT Toán 10 Tập 1: Cho tam giác ABC. Tìm tập hợp các điểm M trong mặt phẳng thỏa mãn |AB+BM|=|ACAM| .

Quảng cáo

Lời giải:

Ta có: AB+BM=AM

|AB+BM|=|AM|=AM

Ta lại có: ACAM=AC+MA=MC

|ACAM|=|MC|=MC

|AB+BM|=|ACAM| nên AM = MC

Tập hợp điểm M thỏa mãn AM = MC là đường trung trực của đoạn thẳng AC.

Vậy tập hợp điểm M thỏa mãn điều kiện đầu bài là đường trung trực của đoạn thẳng AC.

Bài 45 trang 93 SBT Toán 10 Tập 1: Cho hai tam giác ABC và A’B’C’ có cùng trọng tâm là G. Chứng minh AA'+BB'+CC'=0 .

Lời giải:

Ta có: AA'+BB'+CC'=AG+GA'+BG+GB'+CG+GC'

=AG+BG+CG+GA'+GB'+GC'

=GAGBGC+GA'+GB'+GC'

=GA+GB+GC+GA'+GB'+GC'

=0+0

=0

Bài 46 trang 93 SBT Toán 10 Tập 1: Cho tam giác nhọn ABC có các cạnh đôi một khác nhau. Gọi H, O lần lượt là trực tâm và tâm đường tròn ngoại tiếp tam giác, D là điểm đối xứng với H qua O. Chứng minh rằng: HA+HB+HC=HD .

Lời giải:

 Cho tam giác nhọn ABC có các cạnh đôi một khác nhau. Gọi H, O lần lượt là trực tâm

Vẽ đường kính AE

Ta có: ACE^=90° nên AC ⊥ EC

Mà BH ⊥ EC

⇒ BH // AC (1)

Ta lại có: ABE^=90° và AB ⊥ BE

Mà CH ⊥ AB

⇒ BE // CH (2)

Từ (1) và (2) suy ra BHEC là hình bình hành

Xét tứ giác AHDE, có:

O là trung điểm của HD (gt)

O là trung điểm của AE

Do đó AHDE là hình bình hành

Khi đó, ta có:

HA+HB+HC=HA+HB+HC=HA+HE=HD.

Lời giải Sách bài tập Toán 10 Bài 4: Tổng và hiệu của hai vectơ Cánh diều hay khác:

Xem thêm lời giải Sách bài tập Toán 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Cánh diều khác
Tài liệu giáo viên