Lập phương trình đường tròn trong các trường hợp sau

Giải SBT Toán 10 Chân trời sáng tạo Bài tập cuối chương 9

Bài 7 trang 79 SBT Toán 10 Tập 2: Lập phương trình đường tròn trong các trường hợp sau:

a) Có tâm I(2; 2) và bán kính bằng 7;

b) Có tâm J( 0; -3) và đi qua điểm M(-2; -7);

c) Đi qua hai điểm A(2; 2); B(6; 2) và có tâm nằm trên đường thẳng x - y = 0;

d) Đi qua gốc toạ độ và cắt hai trục toạ độ tại các điểm có hoành độ là 8; tung độ là 6.

Quảng cáo

Lời giải:

a) Đường tròn tâm I(2; 2) và bán kính bằng 7 có phương trình:

(x – 2)2 + (y – 2)2 = 49.

Vậy phương trình đường tròn là (x – 2)2 + (y – 2)2 = 49.

b) Đường tròn tâm J(0; - 3) đi qua điểm M(- 2; - 7) có bán kính R = JM

Ta có JM = (xMxJ)2+(yMyJ)2202+7+32=25

Đường tròn tâm J(0; - 3) bán kính R = 2√5 có phương trình là

(x – 0)2 + (y + 3)2 = 20 ⇔ x2 + (y + 3)2 = 20

c) Gọi tâm I(a; b) vì tâm I thuộc đường thẳng x – y = 0 nên ta có a – b = 0 ⇔ a = b

Vậy tâm I(a; a)

Đường tròn đi qua hai điểm A(2; 2); B(6; 2) nên ta có AI2 = BI2

⇔ (a – 2)2 + (a – 2)2 = (a – 6)2 + (a – 2)2

⇔ a2 – 4a + 4 = a2 – 12a + 36

⇔ 8a = 32

⇔ a = 4

Vậy tâm I(4; 4)

Ta có bán kính R = IA = (42)2+(42)2=22

Phương trình đường tròn tâm I(4; 4) bán kính R = 2√2 có phương trình

(x – 4)2 +(y – 4)2 = 8

d) Phương trình đường tròn đi qua O(0; 0); A(8; 0); B(0; 6)

Gọi tâm I(a; b)

Vì đường tròn đi qua 3 điểm O, A, B nên ta có OI2=AI2OI2=BI2

a2+b2=(a - 8)2+b2a2+b2=a2+ (b - 6)2

a2+b2=a216a+64+b2a2+b2=a2+b212b+36

16a=6412b=36a=4b=3

Vậy tâm I(4; 3)

Bán kính R = OI = 42+32=5

Phương trình đường tròn tâm I(4; 3) bán kính R = 5 có phương trình

(x – 4)2 +(y – 3)2 = 25

Quảng cáo


Lời giải SBT Toán 10 Bài tập cuối chương 9 hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Chân trời sáng tạo khác
Tài liệu giáo viên