Giải SBT Toán 10 trang 79 Tập 1 Chân trời sáng tạo
Với Giải sách bài tập Toán 10 trang 79 Tập 1 trong Bài 3: Giải tam giác và ứng dụng thực tế SBT Toán 10 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 79.
Giải SBT Toán 10 trang 79 Tập 1 Chân trời sáng tạo
Bài 1 trang 79 SBT Toán 10 Tập 1: Cho tam giác ABC có BC = a, AC = b, AB = c và a = b. Chứng minh rằng: c2 = 2a2 (1 – cosC ).
Lời giải:
Áp dụng định lí côsin ta có:
c2 = a2 + b2 – 2abcosC
mà a = b nên
c2 = a2 + a2 – 2a2cosC
c2 = 2a2 – 2a2cosC
c2 = 2a2 (1 – cosC ).
Bài 2 trang 79 SBT Toán 10 Tập 1: Tính các góc chưa biết của tam giác ABC trong các trường hợp sau:
a) = 42°, = 63°;
b) BC = 10, AC = 20, = 80°;
c) AB = 15, AC = 25, BC = 30.
Lời giải:
a) Tam giác ABC có: + + = 180°.
⇒ = 180° – – = 180° – 42° – 63° = 75°.
Vậy = 75°.
b) Áp dụng định lí côsin ta có:
AB2 = BC2 + AC2 – 2BC.AC.cos
AB2 = 102 + 202 – 2.10.20.cos80°
AB =
AB ≈ 20,75.
Áp dụng định lí sin ta có: ≈ .
⇒ sinB = AC : = 20 : ≈ 0,949 ⇒ ≈ 71°37’.
⇒ sinA = BC : = 10 : ≈ 0,475 ⇒ ≈ 28°21’.
Vậy ≈ 71°37’ và ≈ 28°21’.
c) Theo định lí côsin ta có: AB2 = BC2 + AC2 – 2BC.AC.cos
⇒ cos = = = ⇒ ≈ 29°55’.
Tương tự như trên, ta có:
cos = = = ⇒ ≈ 93°49’.
cos = = = ⇒ ≈ 56°15’.
Bài 3 trang 79 SBT Toán 10 Tập 1: Để xác định chiều cao của một tòa nhà cao tầng, một người đứng tại điểm M, sử dụng giác kế nhìn thấy đỉnh tòa nhà với góc nâng = 79°, người đó lùi ra xa một khoảng cách LM = 50m thì nhìn thấy đỉnh tòa nhà với góc nâng = 65°. Hãy tính chiều cao của tòa nhà, biết rằng khoảng cách từ mặt đất đến ống ngắm của giác kế đó là PL = QM = 1,4 m ( Hình 6).
Lời giải:
Đặt d = PQ = 50m; h = AR là chiều cao từ giác kế đến đỉnh tòa nhà.
Ta có: = 79° và = 65°
tan = = ⇒ QR = = .
tan = = ⇒ PR = = .
Ta có:
PQ = PR – QR = – = h = 50 (m)
⇒ h ≈ 183,9 (m)
Vậy chiều cao của tòa nhà là AR + RO ≈ 183,9 + 1,4 = 185,3 (m).
Bài 4 trang 79 SBT Toán 10 Tập 1: Một vệ tinh quay quanh Trái Đất, đang bay phía trên hai trạm quan sát ở hai thành phố Hồ Chí Minh và Cần Thơ. Khi vệ tinh nằm giữa hai trạm này, góc nâng của nó được quan sát đồng thời là 55° tại Thành phố Hồ Chí Minh và 80° tại Cần Thơ. Hỏi khi đó vệ tinh cách trạm quan sát Cần Thơ bao xa? Biết rằng, khoảng cách giữa hai trạm quan sát là 127km.
Lời giải:
Tam giác ABC có: + + = 180°.
⇒ = 180° – – = 180° – 80° – 55° = 45°.
Áp dụng định lí sin trong tam giác ABC ta có:
⇒ AC = .sinB = .sin55° ≈ 147 (km).
Vậy khoảng cách giữa trạm Cần Thơ và vệ tinh khoảng 147 km.
Bài 5 trang 79 SBT Toán 10 Tập 1: Tính khoảng cách AB giữa nóc hai tòa cao ốc. Cho biết khoảng cách từ hai điểm đó đến một vệ tinh viễn thông lần lượt là 360 km, 340 km và góc nhìn từ vệ tinh đến A và B là là 13,2° ( Hình 8).
Lời giải:
Gọi điểm O đại diện cho vệ tinh.
Áp dụng định lí côsin trong tam giác OAB:
AB2 = OA2 + OB2 – 2.OA.OB.cos
AB2 = 3602 + 3402 – 2.360.340.cos13,2°
AB =
AB ≈ 82,87 km.
Vậy khoảng cách giữa hai nóc nhà tòa cao ốc khoảng 82,87 km.
Bài 6 trang 79 SBT Toán 10 Tập 1: Một chiếc tàu khởi hành từ bến cảng, đi về hướng Bắc 15 km, sau đó bẻ lái 20° về hướng tây bắc và đi thêm 12 km nữa ( Hình 9). Tính khoảng cách từ tàu đến bến cảng.
Lời giải:
Ta có hình vẽ sau:
AB là đoạn đường mà tàu đi được ban đầu nên AB = 15 km. AC là đoạn tàu đi được sau khi bẻ sang hướng tây bắc 20° nên AC = 12 km và = 20°. BC là khoảng cách từ tàu đến bến cảng.
và là hai góc kề bù ⇒ = 180° – 20° = 160°.
Áp dụng định lí côsin cho tam giác ABC ta có:
BC2 = AC2 + BC2 – 2.AC.BC.cos
BC2 = 152 + 122 – 2.12.15.cos20°
BC =
BC ≈ 26,59 km.
Vậy khoảng cách từ tàu đến bến cảng khoảng 26,59 km.
Lời giải sách bài tập Toán lớp 10 Bài 3: Giải tam giác và ứng dụng thực tế Chân trời sáng tạo hay khác:
Xem thêm lời giải Sách bài tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 10 Chân trời sáng tạo
- Giải SBT Toán 10 Chân trời sáng tạo
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST