Giải SBT Toán 10 trang 26 Tập 2 Kết nối tri thức

Với Giải SBT Toán 10 trang 26 Tập 2 trong Bài tập cuối chương 6 Sách bài tập Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 26.

Giải SBT Toán 10 trang 26 Tập 2 Kết nối tri thức

Bài 6.55 trang 26 Sách bài tập Toán lớp 10 Tập 2: Cho hàm số Cho hàm số trang 26 SBT Toán lớp 10 Tập 2 Kết nối tri thức

a) Tìm tập xác định của hàm số.

b) Vẽ đồ thị hàm số.

c) Từ đồ thị vẽ ở ý b) hãy chỉ ra các khoảng đồng biến, khoảng nghịch biến của hàm số.

d) Tìm tập giá trị của hàm số.

Quảng cáo

Hướng dẫn giải:

a)

Tập xác định của hàm số là tập giá trị của x là đoạn D = [–2; 3].

b)

Trên nửa khoảng [–2; –1), đồ thị hàm số là đoạn thẳng đi qua điểm (–2; –1) và (–1,5; 0)

Trên nửa khoảng [–1; 1), đồ thị hàm số là đoạn thẳng đi qua điểm (–1; 1) và (0; 1,5)

Trên đoạn [1; 3], đồ thị hàm số là đoạn thẳng đi qua điểm (1; 4) và (3; 3).

Vậy ta vẽ được đồ thị hàm số như hình dưới đây

Cho hàm số trang 26 SBT Toán lớp 10 Tập 2 Kết nối tri thức

c)

Đồ thị hàm số đi lên từ trái sang phải trên khoảng (–2; 1) và đi xuống trên khoảng (1; 3)

Vậy hàm số đồng biến trên khoảng (–2; 1) và nghịch biến trên khoảng (1; 3).

d)

Dựa vào đồ thị ta thấy tập giá trị của hàm số là [–1; 2) ∪ [3; 4].

Bài 6.56 trang 26 Sách bài tập Toán lớp 10 Tập 2: Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập xác định, tập giá trị, khoảng đồng biến và khoảng nghịch biến của chúng.

a) y = |x – 1| + |x + 1|;

b) Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập xác định, tập giá trị

Quảng cáo


Hướng dẫn giải:

a)

y = |x – 1| + |x + 1|

Hàm số có tập xác định là: D = ℝ

Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập xác định, tập giá trị

Trên khoảng (–∞; –1), đồ thị hàm số là đường thẳng y = –2x

Trên nửa khoảng [–1; 1), đồ thị hàm số là đường thẳng y = 2 (song song với trục Ox)

Trên nửa khoảng [1; +∞), đồ thị hàm số là đường thẳng y = 2x

Khi x = –1 thì y = 2 nên đồ thị hàm số đi qua điểm (–1; 2)

Khi x = 1 thì y = 2 nên đồ thị hàm số đi qua điểm (1; 2)

Ta vẽ được đồ thị hàm số như sau:

Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập xác định, tập giá trị

Dựa vào đồ thị có:

- Tập giá trị của hàm số là T = [2; +∞).

- Đồ thị hàm số đi xuống từ trái sang phải trên khoảng (–∞; –1), đi lên trên từ trái sang phải trên khoảng (1; +∞), và song song với trục Ox trên khoảng (–1; 1).

Do đó, hàm số này nghịch biến trên khoảng (–∞; –1), đồng biến trên khoảng (1; +∞), và là hàm hằng trên (–1; 1).

b)

Tập xác định hàm số là D = ℝ.

Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập xác định, tập giá trị

Đồ thị hàm số là đường thẳng y = x + 1 trên khoảng (–∞; –1), đường thẳng này đi qua điểm (–2; –1) và (–3; –2).

Đồ thị hàm số là parabol y = x2 – 1 trên nửa khoảng [–1; +∞), parabol này có đỉnh (0; –1), trục đối xứng x = 0 (trục Oy) và đi qua điểm (–1; 0) và (1; 0).

Ta vẽ được đồ thị hàm số như sau:

Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập xác định, tập giá trị

Dựa vào đồ thị ta có:

- Tập giá trị của hàm số là: T = ℝ.

- Đồ thị hàm số đi lên từ trái sang phải trên các khoảng (–∞; –1) và (0; +∞), đi xuống từ trái sang phải trên khoảng (–1; 0).

Do đó, hàm số này đồng biến trên khoảng (–∞; –1) và (0; +∞), nghịch biến trên khoảng (–1; 0).

Bài 6.57 trang 26 Sách bài tập Toán lớp 10 Tập 2: Dựa vào đồ thị của hàm số y = ax2 + bx + c, hãy xác định dấu của các hệ số a, b, c trong mỗi trường hợp dưới đây.

Dựa vào đồ thị của hàm số y = ax^2 + bx + c, hãy xác định dấu của các hệ số a, b, c
Quảng cáo

Hướng dẫn giải:

a)

Xét hình (a) ta có:

Parabol có bề lõm hướng xuống nên a < 0

Parabol cắt trục Oy tại điểm có tung độ dương nên c > 0

Parabol có đỉnh có hoành độ là: -b2a < 0. Mà a < 0 nên b < 0

Vậy a < 0, c > 0, b < 0.

b)

Xét hình (b) ta có:

Parabol có bề lõm hướng lên nên a > 0

Parabol cắt trục Oy tại điểm có tung độ dương nên c > 0

Parabol có đỉnh có hoành độ là: -b2a > 0. Mà a > 0 nên b < 0

Vậy a > 0, c > 0, b < 0.

c)

Xét hình (c) ta có:

Parabol có bề lõm hướng lên nên a > 0

Parabol cắt trục Oy tại gốc tọa độ nên c = 0.

Parabol có đỉnh có hoành độ là: -b2a < 0. Mà a > 0 nên b > 0

Vậy a > 0, c = 0, b > 0.

d)

Xét hình (d) ta có:

Parabol có bề lõm hướng xuống nên a < 0

Parabol cắt trục Oy tại điểm có tung độ âm nên c < 0

Parabol có đỉnh có hoành độ là: -b2a > 0. Mà a < 0 nên b > 0

Vậy a < 0, c < 0, b > 0.

Bài 6.58 trang 26 Sách bài tập Toán lớp 10 Tập 2: Trong mỗi trường hợp dưới đây, hãy vẽ đồ thị của các hàm số trên cùng một mặt phẳng toạ độ rồi xác định toạ độ giao điểm của chúng:

a) y = –x + 3 và y = –x2 – 4x + 1.

b) y = 2x – 5 và y = x2 – 4x – 1.

Quảng cáo

Hướng dẫn giải:

a)

Đồ thị hàm số y = –x + 3 là đường thẳng đi qua điểm (0; 3), (–1; 4) và (3; 0)

Đồ thị hàm số y = –x2 – 4x + 1 là parabol có bề lõm hướng xuống, đỉnh là điểm (–2; 5), trục đối xứng x = –2, đi qua các điểm (0; 1) và (–1; 4)

Đồ thị hai hàm số như hình vẽ:

Trong mỗi trường hợp dưới đây, hãy vẽ đồ thị của các hàm số trên cùng một mặt phẳng

Toạ độ giao điểm của chúng là: (–1; 4) và (–2; 5).

b)

Đồ thị hàm số y = 2x – 5 là đường thẳng đi qua điểm (0; –5), (2,5; 0)

Đồ thị hàm số y = x2 – 4x – 1 là parabol có bề lõm hướng lên, đỉnh là điểm (2; –5), trục đối xứng x = 2, đi qua điểm (0; –1).

Đồ thị hai hàm số như hình vẽ:

Trong mỗi trường hợp dưới đây, hãy vẽ đồ thị của các hàm số trên cùng một mặt phẳng

Hai đồ thị hàm số có giao điểm là M và N

Xét phương trình hoành độ giao điểm của hai đồ thị:

x2 – 4x – 1 = 2x – 5

⇔ x2 – 6x + 4 = 0

x=3-5 hoặc x=3+5

Với x=3-5 ta được y=2.(3-5)-5=1-25. Vậy M3-5;1-25.

Với x=3+5 ta được y=2.(3+5)-5=1+25. Vậy N3+5;1+25.

Bài 6.59 trang 26 Sách bài tập Toán lớp 10 Tập 2: Vẽ đồ thị mỗi hàm số sau, từ đó suy ra tập nghiệm của bất phương trình tương ứng

a) y = x2 – 3x + 2 và bất phương trình: x2 – 3x + 2 ≥ 0;

b) y = x2 – x – 6 và bất phương trình: x2 – x – 6 < 0.

Hướng dẫn giải:

a)

Đồ thị hàm số y = x2 – 3x + 2 là parabol có bề lõm hướng lên, đỉnh là (1,5; –0,25), đi qua hai điểm (1; 0) và (2; 0). Đồ thị hàm số như hình vẽ:

Vẽ đồ thị mỗi hàm số sau, từ đó suy ra tập nghiệm của bất phương trình

Việc giải bất phương trình x2 – 3x + 2 ≥ 0 ứng với việc tìm các khoảng mà phần đồ thị tương ứng của nó nằm phía trên trục hoành. Từ đồ thị trên ta thấy khi x ≤ 1 và x ≥ 2 thì đồ thị hàm số y = x2 – 3x + 2 nằm phía trên trục hoành.

Vậy tập nghiệm của bất phương trình là (–∞; 1]∪[2; +∞).

b)

Đồ thị hàm số y = x2 – x – 6 là parabol có bề lõm hướng lên, đỉnh là: (0,5; –6,25), đi qua hai điểm (–2; 0), (3; 0) được vẽ trong hình sau:

Vẽ đồ thị mỗi hàm số sau, từ đó suy ra tập nghiệm của bất phương trình

Việc giải bất phương trình y = x2 – x – 6 < 0 ứng với việc tìm các khoảng mà phần đồ thị tương ứng của nó nằm phía dưới trục hoành. Từ đồ thị trên ta thấy khi –2 < x < 3 thì đồ thị hàm số y = x2 – x – 6 nằm phía dưới trục hoành.

Vậy tập nghiệm của bất phương trình là (–2; 3).

Bài 6.60 trang 26 Sách bài tập Toán lớp 10 Tập 2: Tìm các giá trị của tham số m để:

a) Hàm số y=1mx2-2mx+5 có tập xác định ℝ;

b) Tam thức bậc hai y = –x2 + mx – 1 có dấu không phụ thuộc vào x;

c) Hàm số y=-2x2+mx-m-6 có tập xác định chỉ gồm một phần tử.

Hướng dẫn giải:

a)

Hàm số y=1mx2-2mx+5 có tập xác định là ℝ nếu và chỉ nếu mx2 – 2mx + 5 > 0 với mọi số thực x

- Khi m = 0 thì hàm số cho bởi công thức y=15 lúc này hàm số có tập xác định là ℝ.

- Khi m ≠ 0 thì mx2 – 2mx + 5 > 0 với mọi số thực x nếu và chỉ nếu a = m > 0 và ∆’ = m2 – 5m < 0

Xét tam thức bậc hai: f(m) = m2 – 5m có:

a = 1 > 0, ∆m = (–5)2 – 4.1.0 = 25 > 0

f(m) = 0 có hai nghiệm phân biệt là: m = 0 hoặc m = 5

Do đó, m2 – 5m < 0 ⇔ 0 < m < 5

Vậy hàm số đã cho xác định trên ℝ nếu và chỉ nếu 0 ≤ m < 5.

b)

Tam thức y = –x2 + mx – 1 có dấu không phụ thuộc vào x khi và chỉ khi

∆ = m2 – 4 < 0

⇔ m2 < 4

⇔ –2 < m < 2.

Vậy tam thức y = –x2 + mx – 1 có dấu không phụ thuộc vào x khi 2 < m < 2.

c)

Ta có:

Tìm các giá trị của tham số m trang 26 SBT Toán 10 tập 2 Kết nối tri thức

Hàm số y=-2x2+mx-m-6 có tập xác định chỉ gồm một phần tử khi và chỉ khi nó có dạng y=-2(x+α)2. Điều này tương đương với

m28-m-6=0

⇔ m­2 – 8m – 48 = 0

⇔ m = –4 hoặc m = 12

Vậy khi m = –4 hoặc m = 12 thì hàm số y=-2x2+mx-m-6 có tập xác định chỉ gồm một phần tử.

Lời giải sách bài tập Toán lớp 10 Bài tập cuối chương 6 Kết nối tri thức hay khác:

Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác
Tài liệu giáo viên