Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O

Giải sách bài tập Toán 11 Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng - Kết nối tri thức

Bài 7.17 trang 31 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O và các cạnh đều bằng a.

a) Chứng minh rằng SO (ABCD).

b) Tính góc giữa đường thẳng SA và mặt phẳng (SBD).

c) Gọi M là trung điểm của cạnh SC và α là góc giữa đường thẳng OM và mặt phẳng (SBC). Tính sinα.

Quảng cáo

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O

a) Có O là trung điểm của AC, BD.

Vì SA = SC nên tam giác SAC là tam giác cân mà SO là trung tuyến nên SO là đường cao hay SO AC.

Tương tự SO BD. Do đó SO (ABCD).

b) Vì SO (ABCD) nên SO AO.

Lại có AO BD (do ABCD là hình vuông). Do đó AO (SBD).

Suy ra SO là hình chiếu vuông góc của SA trên mặt phẳng (SBD). Do đó góc giữa đường thẳng SA và mặt phẳng (SBD) bằng góc giữa hai đường thẳng SA và SO.

Mà (SA,SO) = ASO^.

Xét tam giác ABC vuông tại B, có AC2 = AB2 + BC2 = a2 + a2 = 2a2.

Có SA2 + SC2 = a2 + a2 = 2a2, suy ra AC2 = SA2 + SC2. Do đó tam giác ASC vuông tại S mà SA = SC nên tam giác ASC vuông cân tại S.

Xét tam giác vuông cân ASC tại S có SO là đường cao nên SO là phân giác. Do đó ASO^ = 45o .

Vậy góc giữa đường thẳng SA và mặt phẳng (SBD) bằng 45°.

c) Kẻ OK BC tại K, OH SK tại H.

Có BC OK (cách vẽ), BC SO (SO (ABCD)). Do đó BC (SOK), suy ra BC OH mà OH SK nên OH (SBC).

Suy ra, HM là hình chiếu vuông góc của OM trên mặt phẳng (SBC), do đó góc giữa đường thẳng OM và mặt phẳng (SBC) bằng góc giữa hai đường thẳng OM và MH, mà (OM,MH) = OMH^=α.

Do tam giác SOC vuông tại O, OM là trung tuyến nên OM = SC2=a2.

Xét tam giác ABC có OK là đường trung bình nên OK = AB2=a2.

Xét tam giác SAC vuông tại S, có 1SO2=1SA2+1SC2=1a2+1a2SO=a22 .

Xét tam giác SOK vuông tại O, có 1OH2=1SO2+1OK2=42a2+4a2OH=a66 .

Xét tam giác OHM vuông tại H, có sinα = sinOMH^=OHOM=63.

Vậy sinα = 63.

Quảng cáo

Lời giải SBT Toán 11 Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng hay khác:

Quảng cáo

Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

Săn SALE shopee Tết:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 Kết nối tri thức khác
Tài liệu giáo viên