Cho tứ diện ABCD. Lấy G là trọng tâm tam giác BCD. Phát biểu nào sau đây là sai?

Giải SBT Toán 12 Cánh diều Bài 1: Vectơ và các phép toán vectơ trong không gian

Bài 1 trang 60 SBT Toán 12 Tập 1: Cho tứ diện ABCD. Lấy G là trọng tâm tam giác BCD. Phát biểu nào sau đây là sai?

A. GB+GC+GD=0.

B. GA+GB+GC+GD=0.

C. CB+CD=3CG.

D. AB+AC+AD=3AG.

Quảng cáo

Lời giải:

Đáp án đúng là: B

Cho tứ diện ABCD. Lấy G là trọng tâm tam giác BCD. Phát biểu nào sau đây là sai?

Do G là trọng tâm tam giác BCD nên GB+GC+GD=0. Vậy đáp án A đúng.

Do G là trọng tâm tam giác BCD, có GB+GC+GD=0 nên ta có:

GA+GB+GC+GD=GA+0=GA. Vậy đáp án B sai.

CB+CD=CG+GB+CG+GD = 2CG+GB+GD = 2CGGC = 3CG. Vậy đáp án C đúng.

AB+AC+AD=AG+GB+AG+GC+AG+GD

         =3AG+GB+GC+GD

         = 3AG.

Vậy đáp án D đúng.

Quảng cáo

Lời giải SBT Toán 12 Bài 1: Vectơ và các phép toán vectơ trong không gian hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Cánh diều khác
Tài liệu giáo viên