Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây
Giải SBT Toán 12 Cánh diều Bài 1: Vectơ và các phép toán vectơ trong không gian
Bài 9* trang 61 SBT Toán 12 Tập 1: Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không dãn xuất phát từ điểm O trên trần nhà lần lượt buộc vào ba điểm A, B, C trên đèn tròn (Hình 11). Độ dài của ba đoạn dây OA, OB, OC đều bằng L (inch). Trọng lượng của chiếc đèn là 24 N và bán kính của chiếc đèn là 18 inch (1 inch = 2,54 cm). Gọi F là độ lớn của các lực căng , trên mỗi sợi dây. Khi đó, F = F(L) là một hàm số với biến số là L.
a) Xác định công thức tính hàm số F = F(L).
b) Khảo sát và vẽ đồ thị hàm số F = F(L).
c) Tìm chiều dài tối thiểu của mỗi sợi dây, biết rằng mỗi sợi dây đó được thiết kế để chịu lực căng tối đa là 10 N.
Lời giải:
a)
Gọi A1, B1, C1 lần lượt là các điểm sao cho , , . Khi đó, hai vectơ cùng phương, do đó tồn tại số k ≠ 0 sao cho: .
Tương tự, , .
Suy ra, F = || = k.|| = k. L. (1)
Do chiếc đèn ở vị trí cân bằng nên . Gọi I là tâm của chiếc đèn hình tròn. Vì tam giác ABC là tam giác đều nên I cũng là trọng tâm của tam giác.
Sử dụng quy tắc trọng tâm trong tam giác ABC, ta được:
⇔ hay .
Theo giả thiết bài toán, trọng lượng của chiếc đèn là 24 (N) hay ||, do đó OI = .
Mặt khác, xét hình chóp tam giác đều O.ABC, có OI vuông góc với mặt phẳng đáy (ABC). Khi đó:
OI = = = .
Suy ra, = hay k = .
Thay k = vào (1), ta được công thức hàm số F = (N).
b) Khảo sát hàm số F = , (L > 18).
F = +∞, do đó đường thẳng L = 18 là tiệm cận đứng của đồ thị hàm số.
F = 8, do đó đường thẳng F = 8 là tiệm cận ngang của đồ thị hàm số.
Ta có: F' = < 0, ∀L > 18.
Do đó hàm số luôn nghịch biến trên khoảng (18; +∞).
Ta có bảng biến thiên:
Đồ thị hàm số:
c) Khi lực căng của mỗi sợi dây bằng 10 N, ta có:
= 10 ⇒ 8L = 10 ⇔ L = 30 (thỏa mãn điều kiện L > 18).
Dựa vào đồ thị hàm số ở câu b, ta thấy chiều dài tối thiểu của mỗi sợi dây để lực căng tối đa là 10 N là 30 inch.
Lời giải SBT Toán 12 Bài 1: Vectơ và các phép toán vectơ trong không gian hay khác:
Bài 1 trang 60 SBT Toán 12 Tập 1: Cho tứ diện ABCD. Lấy G là trọng tâm tam giác BCD ....
Bài 2 trang 60 SBT Toán 12 Tập 1: Cho hình hộp ABCD.A'B'C'D'. Phát biểu nào sau đây là đúng? ....
Bài 3 trang 60 SBT Toán 12 Tập 1: Phát biểu nào sau đây là đúng? ....
Bài 4 trang 60 SBT Toán 12 Tập 1: Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai vectơ , bằng ....
Bài 5 trang 60 SBT Toán 12 Tập 1: Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai vectơ , bằng ....
Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
SBT Toán 12 Bài 1: Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm
SBT Toán 12 Bài 2: Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Cánh diều
- Giải Chuyên đề học tập Toán 12 Cánh diều
- Giải SBT Toán 12 Cánh diều
- Giải lớp 12 Cánh diều (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều