Chứng tỏ rằng một thùng hình trụ có thể tích V cố định cần ít vật liệu sản xuất nhất
Giải sách bài tập Toán 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn - Kết nối tri thức
Bài 1.45 trang 32 SBT Toán 12 Tập 1: Chứng tỏ rằng một thùng hình trụ có thể tích V cố định cần ít vật liệu sản xuất nhất (tức là có diện tích về mặt nhỏ nhất) khi chiều cao của thùng gấp đôi bán kính đáy.
Lời giải:
Gọi bán kính đáy của thùng hình trụ là r. Suy ra, chiều cao của thùng hình trụ là .
Diện tích bề mặt của thùng hình trụ là S = 2πr2 + = 2πr2 + , r > 0.
Ta có: S' = 2πr2 – =
S' = 0 ⇔ r = .
Bảng biến thiên của hàm số:
Từ bảng biến thiên: S đạt giá trị nhỏ nhất khi r = , khi đó chiều cao của hình trụ là 2. = 2r.
Đây là điều cần chứng minh.
Lời giải Sách bài tập Toán lớp 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn hay khác:
Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Kết nối tri thức
- Giải Chuyên đề học tập Toán 12 Kết nối tri thức
- Giải SBT Toán 12 Kết nối tri thức
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT