Ba đường thẳng phân biệt có thể tạo ra bao nhiêu góc

Giải sách bài tập Toán lớp 6 Bài 6: Góc

Bài 6 trang 99 sách bài tập Toán lớp 6 Tập 2: Ba đường thẳng phân biệt có thể tạo ra bao nhiêu góc? Hãy vẽ hình trong các trường hợp đó.

Quảng cáo

Lời giải:

Vẽ hai đường thẳng trước, có hai khả năng xảy ra:

* Khả năng 1: Hai đường thẳng đó song song với nhau.

Ta tiếp tục vẽ thêm một đường thẳng thứ ba song song hoặc cắt cả hai đường thẳng kia.

- Trường hợp 1: Đường thẳng thứ ba song song cả hai đường thẳng kia thì ba đường thẳng này không có giao điểm nào.

 Ba đường thẳng phân biệt có thể tạo ra bao nhiêu góc

Vì ba đường thẳng này không có giao điểm nào nên không có góc nào tạo ra trong trường hợp này.

- Trường hợp 2: Đường thẳng thứ ba cắt cả hai đường thẳng kia thì ta có hai giao điểm A và B.

Từ hai điểm gốc A, B, đặt các tia Aa, Ab, Ac, Bd, Be, Bg (như hình vẽ).

Ba đường thẳng phân biệt có thể tạo ra bao nhiêu góc

Các góc tạo thành: ∠aAb, ∠bAc, ∠aAe, ∠eAc, ∠aAc, ∠dBe, ∠eBg, ∠dBb, ∠bBg, ∠dBg, ∠bAe, ∠bBe.

Vậy hình trên có 12 góc.

* Khả năng 2: Hai đường thẳng đó cắt nhau cắt nhau tại điểm A.

Ta tiếp tục vẽ thêm một đường thẳng thứ ba cắt cả hai đường thẳng kia.

- Trường hợp 1: Đường thẳng thứ ba cắt cả hai đường thẳng kia và đi qua giao điểm A thì ta có một giao điểm A.

Từ điểm gốc A, đặt các tia Aa, Ab, Ac, Ad, Ae, Ag (như hình vẽ).

Ba đường thẳng phân biệt có thể tạo ra bao nhiêu góc

Các góc tạo thành: ∠aAb, ∠bAc, ∠cAd, ∠dAe, ∠eAg, ∠gAa, ∠aAc, ∠cAe, ∠eAa, ∠aAd, ∠bAd, ∠dAg, ∠gAb, ∠bAe, ∠cAg      .

Vậy hình trên có 15 góc.

- Trường hợp 2: Đường thẳng thứ ba cắt cả hai đường thẳng kia và không đi qua giao điểm A thì ta có ba giao điểm A, B và C (như hình vẽ).

Từ ba điểm gốc A, B, C đặt các tia Ah, Ak, Bp, Bq, Cm, Cn (như hình vẽ).

Ba đường thẳng phân biệt có thể tạo ra bao nhiêu góc

Các góc tạo thành: ∠hAk, ∠kAn, ∠hAp, ∠pAn, ∠hAn, ∠pAk, ∠pBq, ∠pBm, ∠qBk, ∠kBm, ∠mBq, ∠pBk, ∠mCn, ∠mCh, ∠nCq, ∠qCh, ∠nCh, mCq      .

Vậy hình trên có 18 góc.

*Nhận xét: 

- Hình thứ nhất: Ba đường thẳng không có điểm chung nên không có góc nào tạo ra. 

- Hình thứ hai: 2 đỉnh chung, mỗi đỉnh có 4 tia.

Vậy số góc tạo thành là 2 . 4 . 3 : 2 = 12 góc.

- Hình thứ ba: 1 đỉnh chung, có 6 tia.

Vậy số góc tạo thành là 6 . 5 : 2 = 15 (góc).

- Hình thứ tư: 3 đỉnh chung, mỗi đỉnh có 4 tia.

Vậy số góc tạo thành là 3 . 4 . 3 : 2 = 18 (góc).

Vậy nếu đỉnh chung có n tia thì:

Tổng số các góc được tạo thành là:  n . (n  1) : 2 (góc).

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 6 sách Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 6 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 6

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải sách bài tập Toán lớp 6 Tập 1, Tập 2 hay nhất, chi tiết của chúng tôi được biên soạn bám sát SBT Toán 6 bộ sách Chân trời sáng tạo (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 6 Chân trời sáng tạo khác
Tài liệu giáo viên