Hãy giải thích tại sao trong tam giác vuông, cạnh huyền dài nhất và trong tam giác tù

Giải SBT Toán 7 Bài 31: Quan hệ giữa góc và cạnh đối diện trong một tam giác

Bài 9.3 trang 48 sách bài tập Toán lớp 7 Tập 2: Hãy giải thích tại sao trong tam giác vuông, cạnh huyền dài nhất và trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất.

Quảng cáo

Lời giải:

Gọi tam giác ABC vuông tại A và tam giác MNP là tam giác tù tại đỉnh M.

Hãy giải thích tại sao trong tam giác vuông, cạnh huyền dài nhất và trong tam giác tùHãy giải thích tại sao trong tam giác vuông, cạnh huyền dài nhất và trong tam giác tù

+) Giả sử0°<P^<90° tam giác ABC là tam giác vuông tại đỉnh A nên suy ra A^=90° (1)

Lại có tam giác ABC có tổng ba góc trong tam giác bằng 180º nên suy ra: A^+B^+C^=180°

Hay A^=180°B^+C^

Vậy suy ra 180°B^+C^=90°B^+C^=90°

Hay ta suy ra được 0°<B^<90°0°<C^<90° (2)

Từ (1) và (2) ta có: A^>B^, A^>C^

Theo định lí 2 ta có BC > AC và BC > AB nên BC là cạnh lớn nhất

Vậy trong tam giác vuông, cạnh huyền là cạnh lớn nhất (đpcm).

+) Giả sử tam giác MNP là tam giác tù tại đỉnh M nên suy ra 90°<M^<180° (3)

Lại có tam giác MNP có tổng ba góc trong tam giác bằng 180º nên suy ra: M^+N^+P^=180°

Hay M^=180°N^+P^

Suy ra 90°<180°N^+P^<180°

Do đó 0°<N^+P^<90°

Hay ta suy ra được 0°<N^<90°(4)

Từ (3) và (4) ta có: M^>N^; M^>P^.

Theo định lí 2 ta có NP > MP và NP > MN nên NP là cạnh lớn nhất.

Vậy trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất (đpcm).

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 7 được biên soạn bám sát Sách bài tập Toán lớp 7 Kết nối tri thức với cuộc sống (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Kết nối tri thức khác
Tài liệu giáo viên