Giải SBT Toán 7 trang 74 Tập 1 Kết nối tri thức
Với Giải SBT Toán 7 trang 74 Tập 1 trong Bài tập cuối chương 4 Sách bài tập Toán lớp 7 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 74.
Giải SBT Toán 7 trang 74 Tập 1 Kết nối tri thức
Bài 4.58 trang 74 sách bài tập Toán lớp 7 Tập 1: Cho đường thẳng d đi qua trung điểm M của đoạn thẳng AB và không vuông góc với AB. Kẻ AP, BQ (P ∈ d, Q ∈ d) vuông góc với đường thẳng d (H.4.60). Chứng minh rằng:
a) AP = BQ.
b) ∆APB = ∆BQA.
Lời giải:
a) Xét tam giác vuông PAM và tam giác vuông QBM có:
AM = BM (do M là trung điểm của AB)
(hai góc đối đỉnh)
Do đó, ∆PAM = ∆QBM (cạnh huyền – góc nhọn).
Suy ra AP = BQ.
b) Xét tam giác APB và tam giác BQA có:
AP = BQ (cmt)
(do ∆PAM = ∆QBM)
AB: cạnh chung
Do đó, ∆APB = ∆BQA (c – g – c).
Bài 4.59 trang 74 sách bài tập Toán lớp 7 Tập 1: Cho Hình 4.61, hãy tính số đo các góc của tam giác ABE.
Lời giải:
Ta có: AD = AC = CD, do đó tam giác ACD là tam giác đều.
Suy ra .
Ta có: (hai góc kề bù)
Tam giác ABC có CB = CA nên tam giác ACB cân tại đỉnh C.
Suy ra .
Ta có: (định lí tổng ba góc trong tam giác)
Do đó, .
Suy ra .
Do đó, .
Chứng minh tương tự đối với tam giác ADE cân tại đỉnh D, ta cũng có:
Ta có: .
Vậy trong tam giác ABE có: ; và .
Bài 4.60 trang 74 sách bài tập Toán lớp 7 Tập 1: Cho hình thang cân ABCD có đáy lớn AD và đáy nhỏ BC thỏa mãn AD = 4 cm và AB = BC = CD = 2 cm (H.4.62). Tính các góc của hình thang ABCD.
Lời giải:
Gọi O là trung điểm của AD.
Khi đó, AO = OD = (cm).
Do đó, AB = BC = CD = AO = OD = 2 cm.
Tam giác ABO có AB = BO nên tam giác ABO cân tại đỉnh A.
Suy ra .
Lại có: AD // BC (do ABCD là hình thang cân có AD và BC là đáy)
Suy ra (hai góc so le trong).
Do đó, .
Xét tam giác ABO và tam giác CBO có:
AB = BC (= 2 cm)
(cmt)
BO: cạnh chung
Do đó, ∆ABO = ∆CBO (c – g – c).
Suy ra CO = AO = 2 cm.
Tam giác COD có CD = OD = OC (= 2 cm). Do đó tam giác COD là tam giác đều.
Suy ra .
Ta có: (BC // AD, hai góc ở vị trí trong cùng phía)
Suy ra .
Do ABCD là hình thang cân với AD và BC là đáy.
Vậy và .
Lời giải sách bài tập Toán lớp 7 Bài tập cuối chương 4 Kết nối tri thức hay khác:
Xem thêm lời giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
SBT Toán 7 Bài 3: Luỹ thừa với số mũ tự nhiên của một số hữu tỉ
SBT Toán 7 Bài 4: Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Kết nối tri thức
- Giải SBT Toán 7 Kết nối tri thức
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải SBT Toán 7 được biên soạn bám sát Sách bài tập Toán lớp 7 Kết nối tri thức với cuộc sống (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT