Bài 17 trang 20 SBT Toán 9 Tập 1

Giải SBT Toán 9 Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn - Cánh diều

Bài 17 trang 20 SBT Toán 9 Tập 1: Giải các hệ phương trình sau bằng phương pháp thế:

Quảng cáo

Bài 17 trang 20 SBT Toán 9 Tập 1

Lời giải:

a) 10x3y=0,5           1x+2y=0,41                2

Từ phương trình (2), ta có: x = 0,41 ‒ 2y.   (3)

Thế vào phương trình (1) ta được:

10.(0,41 ‒ 2y) ‒ 3y = ‒0,5.  (4)

Giải phương trình (4):  

10.(0,41 ‒ 2y) ‒ 3y = ‒0,5

4,1 ‒ 20y ‒ 3y = ‒0,5

‒20y ‒ 3y = ‒0,54,1

‒23y = ‒4,6

y = 0,2.

Thay y = 0,2 vào phương trình (3) ta có:

x = 0,41 ‒ 2.0,2 = 0,01.

Vậy hệ phương trình đã cho có nghiệm duy nhất (x; y) = (0,01; 0,2).

b) xy2=12               1x32y=53        2

Từ phương trình (1), ta có: x=12+y2=y+12.  (3)

Thế vào phương trình (2) ta được:

y+1232y=53 hay y+162y=53. (4)

Giải phương trình (4):  

y+162y=53

y+1662y6=526

y + 1 – 6.2y = ‒5.2

y + 1 ‒ 12y = ‒10

‒11y = ‒11

y = 1.

Thay y = 1 vào phương trình (3) ta có: x=1+12=22=1.

Vậy hệ phương trình đã cho có nghiệm duy nhất (x; y) = (1; 1).

c) 5x0,7y=1                110x+1,4y=2     2

Từ phương trình (1), ta có:

5x = 1 + 0,7y nên x=1+0,7y5.  (3)

Thế vào phương trình (2) ta được: 101+0,7y5+1,4y=2.  (4)

Giải phương trình (4): 

101+0,7y5+1,4y=2 

107y5+1,4y55=255

‒10 ‒ 7y + 1,4y.5 = ‒2.5

‒10 ‒ 7y + 7y = ‒10

0y = 0.

Do phương trình trên có vô số nghiệm nên hệ phương trình đã cho có vô số nghiệm.

Vậy hệ phương trình đã cho có vô số nghiệm x;y=1+0,7y5;y với y .

Quảng cáo

Lời giải SBT Toán 9 Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn hay khác:

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 9 Cánh diều của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Tập 1 & Tập 2 (NXB Đại học Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Cánh diều khác
Tài liệu giáo viên