Cho tam giác ABC vuông tại A có đường cao AH, Hình chiếu của H trên AB, AC lần lượt là D, E

Giải SBT Toán 9 Bài 3: Tiếp tuyến của đường tròn - Cánh diều

Bài 26 trang 109 SBT Toán 9 Tập 1: Cho tam giác ABC vuông tại A có đường cao AH. Hình chiếu của H trên AB, AC lần lượt là D, E. Gọi (O) là đường tròn đường kính HB và (O’) là đường tròn đường kính HC. Chứng minh:

a) Điểm D thuộc đường tròn (O) và điểm E thuộc đường tròn (O’);

b) Hai đường tròn (O) và (O’) tiếp xúc ngoài;

c) AH là tiếp tuyến chung của hai đường tròn (O) và (O’);

d) AH = DE;

e) Diện tích tứ giác DEO’O bằng nửa diện tích tam giác ABC.

Quảng cáo

Lời giải:

Cho tam giác ABC vuông tại A có đường cao AH, Hình chiếu của H trên AB, AC lần lượt là D, E

a) Xét ∆BDH vuông tại D có đường trung tuyến DO ứng với cạnh huyền BH nên DO=BH2.

Mà O là tâm đường tròn đường kính BH nên điểm D thuộc đường tròn (O).

Tương tự, ta chứng minh được O'E=12HC nên điểm E thuộc đường tròn (O’).

b) Do OO’ = OH + O’H nên hai đường tròn (O) và (O’) tiếp xúc ngoài tại H.

c) Do AH vuông góc với OO’ tại H nên:

⦁ AH ⊥ HB tại H thuộc (O) nên AH là tiếp tuyến của đường tròn (O);

⦁ AH ⊥ HC tại H thuộc (O’) nên AH là tiếp tuyến của đường tròn (O’).

Vậy AH là tiếp tuyến chung của hai đường tròn (O) và (O’).

d) Xét tứ giác ADHE có DAE^=ADH^=AEH^=90° nên tứ giác ADHE là hình chữ nhật. Suy ra AH = DE.

e) Do ADHE là hình chữ nhật nên hai đường chéo AH, DE bằng nhau và cắt nhau tại trung điểm I của mỗi đường. Do đó IA=IH=12AH=12DE=ID=IE.

Xét ∆ODI và ∆OHI có: ID = IH; OD = OH; OI là cạnh chung.

Do ∆ODI = ∆OHI (c.c.c) nên ODI^=OHI^=90° hay OD ⊥ DE.

Tương tự, ta chứng minh được O’E ⊥ DE.

Suy ra OD // O’E nên tứ giác DEO’O là hình thang có DE là đường cao.

Diện tích hình thang DEO’O là S1=DEOD+O'E2.

Diện tích tam giác ABC là: S2=AHBC2.

Mà DEư = AH và BC = BH + CH = 2OD + 2O’E = 2(OD + O’E).

Suy ra S1S2=DEOD+O'E2AHBC2=DEOD+O'EAHBC=DEOD+O'EDE2OD+O'E=12.

Do đó S1=12S2.

Vậy diện tích tứ giác DEO’O bằng nửa diện tích tam giác ABC.

Quảng cáo

Lời giải SBT Toán 9 Bài 3: Tiếp tuyến của đường tròn hay khác:

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 9 Cánh diều của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Tập 1 & Tập 2 (NXB Đại học Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Cánh diều khác
Tài liệu giáo viên