Cho tam giác đều ABC có các đường cao AD, BE, CF cắt nhau tại H

Giải SBT Toán 9 Bài tập cuối chương 9 - Cánh diều

Bài 27 trang 114 SBT Toán 9 Tập 2: Cho tam giác đều ABC có các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K, M theo thứ tự là trung điểm của HA, HB, HC. Chứng minh lục giác DKFIEM là lục giác đều.

Quảng cáo

Lời giải:

Cho tam giác đều ABC có các đường cao AD, BE, CF cắt nhau tại H

Vì ABC là tam giác đều và CF là đường cao nên CF cũng là đường phân giác của ACB^.

Suy ra C1^=12ACB^=1260°=30°.

Tam giác HDC vuông tại D có

⦁ C1^+H1^=90°, suy ra H1^=90°C1^=90°30°=60°;

⦁ M là trung điểm của HC hay DM là đường trung tuyến ứng với cạnh huyền nên nên MD = MH = MC (cùng bằng một nửa cạnh huyền HC).

Do đó, tam giác DHM là tam giác đều.

Tương tự, ta cũng chứng minh được các tam giác HEM, HEI, HIF, HFK, HKD là các tam giác đều.

Từ đó suy ra lục giác DKFIEM có các góc đều bằng 2.60° = 120° và các cạnh đều bằng nhau, do đó lục giác DKFIEM là lục giác đều.

Quảng cáo

Lời giải SBT Toán 9 Bài tập cuối chương 9 hay khác:

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 9 Cánh diều của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Tập 1 & Tập 2 (NXB Đại học Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Cánh diều khác
Tài liệu giáo viên