Cho đồ thị của các hàm số y = ax^2 (a ≠ 0) và y = a’x^2 (a’ ≠ 0) (Hình 4)
Giải sách bài tập Toán 9 Bài 1: Hàm số và đồ thị của hàm số y = ax ^2 (a ≠ 0) - Chân trời sáng tạo
Bài 6 trang 7 sách bài tập Toán 9 Tập 2: Cho đồ thị của các hàm số y = ax2 (a ≠ 0) và y = a’x2 (a’ ≠ 0) (Hình 4).
Cho biết điểm A thuộc đồ thị của hàm số y = ax2, điểm B thuộc đồ thị của hàm số y = a’x2.
a) Xác định các hệ số a và a’.
b) Lấy điểm A’ đối xứng với A qua trục tung. Điểm A’ có thuộc đồ thị của hàm số y = ax2 không? Vì sao?
c) Biết rằng điểm M(4; b) thuộc đồ thị của hàm số y = a’x2, hãy tính b. Điểm M’(– 4; b) có thuộc đồ thị của hàm số y = a’x2 không? Vì sao?
Lời giải:
Từ Hình 4 ta có A(2; –4) và B(2; –2).
a) ⦁ Do điểm A thuộc đồ thị của hàm số y = ax2 nên thay x = 2; y = –4 vào hàm số y = ax2, ta được
‒4 = a.22 hay 4a = ‒4, suy ra a = –1.
Do đó (P): y = –x2.
⦁ Do điểm B thuộc đồ thị của hàm số y = a’x2 nên thay toạ độ điểm x = 2; y = –2 vào hàm số y = a’x2, ta được
‒2 = a.22 hay 4a = ‒2, suy ra
Do đó
b) Cách 1. Ta có: đồ thị hàm số (P): y = –x2 là một parabol nhận trục tung làm trục đối xứng.
Mà hai điểm A, A’ đối xứng với nhau qua trục tung và A thuộc (P) nên điểm A’ cũng thuộc (P): y = –x2.
Cách 2. Điểm A’ đối xứng với điểm A qua trục tung nên ta có A’(–2; –4).
Thay x = –2 vào hàm số y = –x2, ta được: y = –(–2)2 = –4.
Do đó điểm A’(–2; –4) cũng thuộc (P): y = –x2.
c) Cách 1. Ta có: đồ thị hàm số là một parabol nhận trục tung làm trục đối xứng.
Xét điểm M(4; b) và M’(–4; b) là hai điểm có hoành độ đối nhau và tung độ bằng nhau nên M, M’ là hai điểm đối xứng với nhau qua trục tung, mà điểm M(4; b) thuộc đồ thị (P’) nên điểm M’(–4; b) cũng thuộc .
Cách 2. Do điểm M(4; b) thuộc đồ thị của hàm số nên thay x = 4; y = b vào hàm số ta được
suy ra b = –8.
Do đó M(4; –8) và M’(–4; –8).
Thay x = –4 vào hàm số ta được:
Vậy điểm M’(–4; –8) thuộc .
Lời giải SBT Toán 9 Bài 1: Hàm số và đồ thị của hàm số y = ax2 (a ≠ 0) hay khác:
Bài 2 trang 7 sách bài tập Toán 9 Tập 2: Cho hàm số Vẽ đồ thị của hàm số....
Bài 3 trang 7 sách bài tập Toán 9 Tập 2: Cho parabol và đường thẳng d: y = 3x...
Bài 4 trang 7 sách bài tập Toán 9 Tập 2: Cho hàm số Vẽ đồ thị của hàm số...
Xem thêm giải sách bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Chân trời sáng tạo
- Giải SBT Toán 9 Chân trời sáng tạo
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Cánh diều (các môn học)
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải SBT Toán 9 Chân trời sáng tạo của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Tập 1 & Tập 2 (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST