Cho tam giác ABC vuông tại A, có đường cao AH. Chứng minh rằng BC tiếp xúc với đường tròn (A) bán kính AH

Giải sách bài tập Toán 9 Bài 16: Vị trí tương đối của đường thẳng và đường tròn - Kết nối tri thức

Bài 5.21 trang 65 sách bài tập Toán 9 Tập 1: Cho tam giác ABC vuông tại A, có đường cao AH.

a) Chứng minh rằng BC tiếp xúc với đường tròn (A) bán kính AH;

b) Gọi M và N là các điểm đối xứng với H lần lượt qua AB và AC. Chứng minh rằng BM và CN là hai tiếp tuyến của (A);

C) Chứng minh rằng MN là một đường kính của (A);

d) Tính diện tích của tứ giác BMNC, biết HB = 2 cm và HC = 4,5 cm.

Quảng cáo

Lời giải:

Cho tam giác ABC vuông tại A, có đường cao AH. Chứng minh rằng BC tiếp xúc với đường tròn (A) bán kính AH

a) Ta thấy AH là bán kính của đường tròn (A) bán kính AH và AH ⊥ BC.

Do đó BC là tiếp tuyến của đường tròn (A) bán kính AH tại H. (đpcm)

b) Do M đối xứng với H qua B nên AM = AH, BM = BH.

Xét hai tam giác MAB và HAB có:

Chung cạnh AB; AM = AH; BM = BH.

Do đó ∆MAB = ∆HAB (c.c.c), suy ra AMB^=AHB^=90° hay AM ⊥ MB.

Từ ∆MAB = ∆HAB (c.c.c), suy ra AM = AH.

Do đó M nằm trên đường tròn (A) bán kính AH.

Ta có: AM là bán kính của đường tròn (A) bán kính AH và AM ⊥ MB

Do đó MB là tiếp tuyến của đường tròn (A) bán kính AH tại M. (đpcm)

Tương tự ta chứng minh được CN là tiếp tuyến của đường tròn (A) bán kính AH tại N.

c) Theo câu b, ∆MAB = ∆HAB nên MAB^=HAB^

Tương tự, ∆NAC = ∆HAC nên NAC^=HAC^.

HAB^+HAC^=90° do tam giác ABC vuông tại A nên:

MAB^+HAB^+HAC^+NAC^=2HAB^+HAC^=2.90°=180°

Suy ra M, A, N thẳng hàng.

Mà M và N nằm trên (A) nên MN là đường kính của (A). (đpcm)

d) Theo câu b, BM ⊥ MN và CN ⊥ MN nên BM // CN, suy ra tứ giác BMNC là hình thang vuông.

M đối xứng với H qua AB nên BM = BH.

N đối xứng với H qua AC nên CN = CH.

Ta có BM + CN = BH + CH = 2 + 4,5 = 6,5 (cm)

Xét hai tam giác HBA và ABC ta có:

Chung góc B; BHA^=BAC^=90°

Suy ra ∆HBA ᔕ ∆ABC (g.g), do đó BAH^=ACH^

Xét hai tam giác HBA và HBC có:

BHA^=CHA^=90°

BAH^=ACH^

Suy ra ∆HBA ᔕ ∆HBC (g.g), do đó ta có:

AHCH=BHAH hay AH=BH.CH=4,5.2=3(cm)

MN là đường kính của (A) nên MN = 2AH = 2 . 3 = 6 (cm)

Diện tích tứ giác BMNC là:

12MNBM+CN=12.6,5.6=19,5 (cm2)

Vậy diện tích tứ giác BMNC là 19,5 cm2.

Quảng cáo

Lời giải SBT Toán 9 Bài 16: Vị trí tương đối của đường thẳng và đường tròn hay khác:

Quảng cáo

Xem thêm giải sách bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 9 Kết nối tri thức của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Tập 1 & Tập 2 (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Kết nối tri thức khác
Tài liệu giáo viên