Bài 5 trang 30 Toán 10 Tập 1 Cánh diều
Giải Toán 10 Cánh diều Bài tập cuối chương 2
Bài 5 trang 30 Toán lớp 10 Tập 1: Một chuỗi nhà hàng ăn nhanh bán đồ ăn từ 10h00 sáng đến 22h00 mỗi ngày. Nhân viên phục vụ của nhà hàng làm việc theo hai ca, mỗi ca 8 tiếng, ca I từ 10h00 đến 18h00 và ca II từ 14h00 đến 22h00. Tiền lương của nhân viên được tính theo giờ (bảng dưới).
Để mỗi nhà hàng hoạt động được thì cần tối thiểu 6 nhân viên trong khoảng 10h00 – 18h00, tối thiểu 24 nhân viên trong khoảng thời gian cao điểm 14h00 – 18h00 và không quá 20 nhân viên trong khoảng 18h00 – 22h00. Do số lượng khách trong khoảng 14h00 – 22h00 thường đông hơn nên nhà hàng cần số nhân viên ca II ít nhất phải gấp đôi số nhân viên ca I. Em hãy giúp chủ chuỗi nhà hàng chỉ ra cách huy động số lượng nhân viên cho mỗi ca sao cho chi phí tiền lương mỗi ngày là ít nhất.
Lời giải:
Gọi số nhân viên ca I cần huy động là x (nhân viên), số nhân viên ca II cần huy động là y (nhân viên) (x, y > 0; ).
Do ca I từ 10h00 – 18h00 và ca II từ 14h00 – 22h00 nên số nhân viên trong thời gian từ 14h00 – 18h00 chính là tổng số nhân của 2 ca và là x + y (nhân viên), x + y > 0.
Vì cần tối thiểu 6 nhân viên trong khoảng 10h00 – 18h00 (ca I) nên x ≥ 6.
Cần tối thiểu 24 nhân viên trong khoảng thời gian cao điểm 14h00 – 18h00 (giao giữa hai ca) nên x + y ≥ 24.
Cần không quá 20 nhân viên trong khoảng 18h00 – 22h00 (trong khoảng thời gian này chỉ còn lại y nhân viên của ca II làm) nên 0 < y ≤ 20.
Do số lượng khách trong khoảng 14h00 – 22h00 thường đông hơn nên nhà hàng cần số nhân viên ca II ít nhất phải gấp đôi số nhân viên ca I nên y ≥ 2x.
Quan sát bảng đã cho ta thấy:
+ Tiền lương trong 1 giờ ở ca I là 20 000 đồng nên 1 nhân viên làm việc 1 ngày trong ca I có tiền lương là 20 000 . 8 = 160 000 đồng.
+ Tiền lương trong 1 giờ của ca II là 22 000 đồng nên 1 nhân viên làm việc 1 ngày trong ca II có tiền lương là 22 000 . 8 = 176 000 đồng.
Do đó tổng chi phí tiền lương cho x nhân viên ca I và y nhân viên ca II trong một ngày là T = 160 000x + 176 000y (đồng).
Khi đó bài toán đã cho đưa về: Tìm x, y là nghiệm của hệ bất phương trình bậc nhất hai ẩn (*) sao cho T = 160 000x + 176 000y có giá trị là nhỏ nhất.
Trước hết, ta xác định miền nghiệm của hệ bất phương trình (*) bằng cách vẽ đồ thị.
Miền nghiệm của hệ bất phương trình (*) là miền tứ giác ABCD với A(6; 18), B(6; 20), C(10; 20), D(8; 16).
Người ta chứng minh được: Biểu thức T = 160 000x + 176 000 y có giá trị nhỏ nhất tại một trong các đỉnh của tứ giác ABCD.
Tính giá trị của biểu thức T tại các cặp số (x; y) là tọa độ các đỉnh của tứ giác, ta có:
TA = 160 000 . 6 + 176 000 . 18 = 4 128 000
TB = 160 000 . 6 + 176 000 . 20 = 4 480 000
TC = 160 000 . 10 + 176 000 . 20 = 5 120 000
TD = 160 000 . 8 + 176 000 . 16 = 4 096 000
So sánh các giá trị trên ta thấy T nhỏ nhất bằng 4 096 000 khi x = 8 và y = 16 ứng với tọa độ đỉnh D.
Vậy để chi phí tiền lương mỗi ngày là ít nhất thì chuỗi nhà hàng cần huy động 8 nhân viên ca I và 16 nhân viên ca II, khi đó chi phí tiền lương cho 1 ngày là 4 096 000 đồng.
Lời giải bài tập Toán 10 Bài tập cuối chương 2 hay, chi tiết khác:
Các bài học để học tốt Toán 10 Bài tập cuối chương 2:
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Toán 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Cánh diều
- Giải Chuyên đề học tập Toán 10 Cánh diều
- Giải SBT Toán 10 Cánh diều
- Giải lớp 10 Cánh diều (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều