Giải Toán 10 trang 79 Tập 1 Chân trời sáng tạo
Với Giải Toán 10 trang 79 Tập 1 trong Bài tập cuối chương 4 Toán 10 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 79.
Giải Toán 10 trang 79 Tập 1 Chân trời sáng tạo
Bài 4 trang 79 Toán lớp 10 Tập 1: Cho tam giác ABC có , b = 8, c = 5. Tính:
a) Cạnh a và các góc , ;
b) Diện tích tam giác ABC;
c) Bán kính đường tròn ngoại tiếp và đường cao AH của tam giác.
Lời giải:
a) Áp dụng định lí côsin ta có:
a2 = b2 + c2 – 2bccosA = 82 + 52 – 2.8.5.cos120° = 129
⇒ a = .
Áp dụng hệ quả của định lí côsin ta có:
cosB = .
⇒ .
Tam giác ABC có:
Vậy a ≈ 11,4; ; .
b) Nửa chu vi tam giác ABC là :
Áp dụng công thức Heron ta có diện tích tam giác ABC:
Vậy diện tích tam giác ABC khoảng 17,2 (đơn vị diện tích).
c) Ta có diện tích tam giác ABC:
Vậy bán kính đường tròn ngoại tiếp tam giác ABC khoảng 6,6 (đơn vị độ dài).
Gọi ha là độ dài đường cao của tam giác ABC hạ từ đỉnh A, tức là ha = AH.
Khi đó
⇒ AH = ha ≈ 3.
Vậy AH ≈ 3.
Bài 5 trang 79 Toán lớp 10 Tập 1: Cho hình bình hành ABCD.
a) Chứng minh 2(AB2 + BC2) = AC2 + BD2.
b) Cho AB = 4, BC = 5, BD = 7. Tính AC.
Lời giải:
a) Do ABCD là hình bình hành nên BC = AD; AB = DC,
Và AB // CD nên suy ra cosD = cos(180 – A)= – cosA.
Áp dụng định lí côsin cho hai tam giác ABD và ADC ta có:
BD2 = AD2 + AB2 – 2.AD.AB.cosA = BC2 + AB2 – 2.BC.AB.cosA
AC2 = AD2 + DC2 – 2.AD.DC.cosD = BC2 + AB2 + 2.BC.AB.cosA
Khi đó : BD2 + AC2 = 2AB2 + 2BC2 = 2(AB2 + BC2).
Vậy 2(AB2 + BC2) = AC2 + BD2.
b) Thay AB = 4, BC = 5, BD = 7 vào biểu thức 2(AB2 + BC2) = AC2 + BD2 ta được:
2.(42 + 52) = AC2 + 72 ⇒ AC2 = 2.(42 + 52) – 72 = 33
⇒ AC =
Vậy AC ≈ 5,7.
Bài 6 trang 79 Toán lớp 10 Tập 1: Cho tam giác ABC có a = 15, b = 20, c = 25.
a) Tính diện tích tam giác ABC.
b) Tính bán kính đường tròn ngoại tiếp tam giác ABC.
Lời giải:
a) Nửa chu vi tam giác ABC là :
Áp dụng công thức Heron ta có diện tích tam giác ABC:
Vậy diện tích tam giác ABC là 150 (đơn vị diện tích).
b) Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC.
Ta có diện tích tam giác ABC:
Vậy bán kính đường tròn ngoại tiếp tam giác ABC là 12,5 (đơn vị độ dài).
Bài 7 trang 79 Toán lớp 10 Tập 1: Cho tam giác ABC. Chứng minh rằng:
cotA + cotB + cotC =
Lời giải:
Đặt BC = a, AC = b, AB = c.
Ta có: cotA = mà theo hệ quả định lí côsin cosA = ;
Vì ⇒ sinA =
Do đó cotA =
Tương tự, ta có : cotB = ; cotC = ;
Suy ra: cotA + cotB + cotC =
Mặt khác S = (R là bán kính đường tròn ngoại tiếp tam giác ABC).
Suy ra: cotA + cotB + cotC =
Vậy cotA + cotB + cotC =
Bài 8 trang 79 Toán lớp 10 Tập 1: Tính khoảng cách AB giữa hai nóc tòa cao ốc. Cho biết khoảng cách từ hai điểm đó đến một vệ tinh viễn thông lần lượt là 370 km, 350 km và góc nhìn từ vệ tinh đến A và B là 2,1°.
Lời giải:
Gọi vị trí của vệ tinh là C. Khi đó ta có tam giác ABC có : AC = 370 km, BC = 350 km, .
Áp dụng định lí côsin cho tam giác ABC ta có :
AB2 = AC2 + BC2 – 2.AC.BC.cosC = 3702 + 3502 – 2.370.350.cos2,1° ≈ 573,9
⇒ AB = ≈ 24.
Vậy khoảng cách giữa hai nóc nhà A và B khoảng 24 km.
Bài 9 trang 79 Toán lớp 10 Tập 1: Hai chiếc tàu thủy P và Q cách nhau 300 m và thẳng hàng với chân B của tháp hải đăng AB ở trên bờ biển (Hình 2). Từ P và Q, người ta nhìn thấy tháp hải đăng AB dưới các góc và . Tính chiều cao của tháp hải đăng đó.
Lời giải:
Ta có tam giác ABP và tam giác ABQ là các tam giác vuông tại B.
Trong tam giác ABP vuông tại B ta có: tan =
Suy ra : tan35° = ⇒ AB = (300 + QB).tan35° (1)
Trong tam giác ABQ vuông tại B ta có: tan =
Suy ra : tan48° = ⇒ AB = QB.tan48° (2)
Từ (1) và (2) suy ra : (300 + QB).tan35° = QB.tan48°
⇒ QB = ≈ 511,8.
⇒ AB = QB.tan48o ≈ 511,8.tan 48° ≈ 568,4.
Vậy chiều cao của tháp hải đăng khoảng 568,4 m.
Bài 10 trang 79 Toán lớp 10 Tập 1: Muốn đo chiều cao của một ngọn tháp, người ta lấy hai điểm A, B trên mặt đất có khoảng cách AB = 12 m cùng thẳng hàng với chân C của tháp để đặt hai giác kế. Chân của hai giác kế có chiều cao là h = 1,2 m. Gọi D là đỉnh tháp và hai điểm A1, B1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được . Tính chiều cao CD của tháp.
Lời giải:
Do phương nằm ngang hợp với phương thẳng đứng của tháp góc 90° nên hai tam giác DC1A1 và DC1B1 là hai tam giác vuông tại C1.
Tam giác DC1A1 có : tan49° = ⇒ DC1 = C1A1tan49° (1).
Tam giác DC1B1 có : tan35° =
⇒ DC1 = (C1A1 + 12). tan35° = C1A1 tan35° + 12tan35° (2).
Từ (1) và (2) suy ra: C1A1tan49° = C1A1 tan35° + 12tan35°
⇒ C1A1 = ≈ 18,7.
⇒ DC1 = C1A1tan49° ≈ 18,7.tan49° ≈ 21,5.
Mà DC = DC1 + C1C = 21,5 + 1,2 = 22,7.
Vậy chiều cao của tháp CD khoảng 22,7 m.
Lời giải bài tập Toán 10 Bài tập cuối chương 4 hay khác:
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 10 Chân trời sáng tạo
- Giải SBT Toán 10 Chân trời sáng tạo
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST