Bài 9 trang 96 Toán 10 Tập 2 - Kết nối tri thức

Giải Toán 10 Kết nối tri thức Bài tập ôn tập cuối năm

Bài 9 trang 96 Toán 10 Tập 2: Cho hàm số y = f(x) = ax2 + bx + c với đồ thị là parabol (P) có đỉnhI52;14 và đi qua điểm A(1; 2).

Quảng cáo

a) Biết rằng phương trình của parabol có thể viết dưới dạng y = a(x – h)2 + k, trong đó I(h, k) là tọa độ đỉnh của parabol. Hãy xác định phương trình của parabol (P) đã cho và vẽ parabol này.

b) Từ parabol (P) đã vẽ ở câu a, hãy cho biết khoảng đồng biến và khoảng nghịch biến của hàm số y = f(x).

c) Giải bất phương trình f(x) ≥ 0.

Lời giải:

a) Vì parabol có đỉnh I52;14 nên ta có h =52 và k =-14 . Suy ra phương trình của parabol (P) có dạng: y=ax52214

Vì parabol (P) đi qua điểm A(1; 2) nên ta có 2=a152214. Suy ra a = 1. 

Vậy parabol (P) có phương trình là y=1.x52214 hay y = x2 – 5x + 6. 

Quảng cáo


* Vẽ parabol (P): 

Parabol có đỉnh I52;14, hệ số a = 1> 0 nên parabol có bề lõm hướng lên trên.

Phương trình trục đối xứng: x=52

Giao điểm của (P) với trục tung có tọa độ là B(0; 6). 

Phương trình x2 – 5x + 6 = 0 có hai nghiệm x = 2 và x = 3. Vậy giao điểm của (P) với trục hoành là C(2; 0) và D(3; 0). 

Vẽ đường cong đi qua các điểm trên ta được parabol (P).

Bài 9 trang 96 Toán 10 Tập 2 | Kết nối tri thức Giải Toán 10

b) Từ parabol (P) đã vẽ ở câu a, ta có hàm số y = x2 – 5x + 6 đồng biến trên khoảng 52;  + và nghịch biến trên khoảng ;52

c) Ta có: f(x) ≥ 0 

⇔ x2 – 5x + 6 ≥ 0

⇔ x ≤ 2 hoặc x ≥ 3 (từ đồ thị suy ra)

Vậy tập nghiệm của bất phương trình là S = (– ∞; 2] ∪ [3; + ∞). 

Quảng cáo

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Quảng cáo

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác
Tài liệu giáo viên