Giải Toán 11 trang 109 Tập 1 Cánh diều
Với Giải Toán 11 trang 109 Tập 1 trong Bài 4: Hai mặt phẳng song song Toán 11 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 109.
Giải Toán 11 trang 109 Tập 1 Cánh diều
Luyện tập 4 trang 109 Toán 11 Tập 1: Bạn Minh cho rằng: Nếu a, b là hai cát tuyến bất kì cắt ba mặt phẳng song song (P), (Q), (R) lần lượt tại các điểm A, B, C và A’, B’, C’ thì .
Phát biểu của bạn Minh có đúng không? Vì sao?
Lời giải:
Theo định lí Thalès, nếu a, b là hai cát tuyến bất kì cắt ba mặt phẳng song song (P), (Q), (R) lần lượt tại các điểm A, B, C và A’, B’, C’ thì .
Do đó .
Theo bài, bạn Minh phát biểu rằng
Mà do nên phát biểu của bạn Minh là sai.
Bài 1 trang 109 Toán 11 Tập 1: Bạn Chung cho rằng: Nếu mặt phẳng (P) chứa hai đường thẳng a, b và a, b cùng song song với mặt phẳng (Q) thì (P) luôn song song với (Q). Phát biểu của bạn Chung có đúng không? Vì sao?
Lời giải:
Phát biểu của bạn Chung không đúng vì trong trường hợp này, để (P) // (Q) thì hai đường thẳng a và b trong mặt phẳng (P) cần thêm điều kiện cắt nhau tại một điểm.
Chẳng hạn: xét trường hợp hai đường thẳng a và b song song với nhau trong mp(P) (hình vẽ).
Do a // (Q) nên tồn tại đường thẳng c nằm trên (Q) sao cho c // a.
Do a // b và c // a nên a // b // c.
Ta có: b // c mà c ⊂ (Q) nên b // (Q).
Trong hình vẽ trên, tuy a // (Q) và b // (Q) nhưng (P) không song song với (Q).
Bài 2 trang 109 Toán 11 Tập 1: Trong mặt phẳng (P) cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường thẳng a, b, c, d đôi một song song với nhau và không nằm trong mặt phẳng (P). Một mặt phẳng cắt a, b, c, d lần lượt tại bốn điểm A’, B’, C, D’. Chứng minh rằng A’B’C’D’ là hình bình hành.
Lời giải:
• Ta có: AB // CD (do ABCD là hình bình hành).
Mà CD ⊂ mp(CDD’C’) nên AB // (CDD’C’).
Lại có a // d nên A’A // D’D
Mà D’D ⊂ mp(CDD’C’) nên A’A // (CDD’C’).
Ta có: AB // (CDD’C’);
A’A // (CDD’C’);
AB, A’A cắt nhau tại A và cùng nằm trong (ABB’A’)
Do đó (ABB’A’) // (CDD’C’).
Ta có: (ABB’A’) // (CDD’C’);
(ABB’A’) ∩ (Q) = A’B’;
(CDD’C’) ∩ (Q) = C’D’.
Do đó A’B’ // C’D’.
• Tương tự, (ADD’A’) // (BCC’B);
(ADD’A’) ∩ (Q) = A’D’;
(BCC’B) ∩ (Q) = B’C’.
Do đó A’D’ // B’C’.
Tứ giác A’B’C’D’ có A’B’ // C’D’ và A’D’ // B’C’ nên A’B’C’D là hình bình hành.
Bài 3 trang 109 Toán 11 Tập 1: Cho tứ diện ABCD. Lấy G1, G2, G3 lần lượt là trọng tâm của các tam giác ABC, ACD, ADB.
a) Chứng minh rằng (G1G2G3) // (BCD).
b) Xác định giao tuyến của mặt phẳng (G1G2G3) với mặt phẳng (ABD).
Lời giải:
a)
Gọi M, N, P lần lượt là trung điểm của BC, CD, DB.
Trong mp(ABC), xét ABC có G1 là trọng tâm của tam giác nên ;
Trong mp(ACD), xét ACD có G2 là trọng tâm của tam giác nên ;
Trong mp(ABD), xét ABD có G3 là trọng tâm của tam giác nên .
Trong mp(AMP), xét AMP có nên G1G3 // MP (theo định lí Thalès đảo).
Mà MP ⊂ (BCD) nên G1G3 // (BCD).
Chứng minh tương tự ta cũng có nên G2G3 // NP (theo định lí Thalès đảo).
Mà NP ⊂ (BCD) nên G2G3 // (BCD).
Ta có: G1G3 // (BCD);
G2G3 // (BCD);
G1G3, G2G3 cắt nhau tại G3 và cùng nằm trong mp(G1G2G3).
Do đó (G1G2G3) // (BCD).
b)
Ta có: B, D cùng thuộc hai mặt phẳng (ABD) và (BCD) nên (ABD) ∩ (BCD) = BD.
Giả sử (ABD) ∩ (G1G2G3) = d.
Ta có: (G1G2G3) // (BCD);
(ABD) ∩ (BCD) = BD;
(ABD) ∩ (G1G2G3) = d.
Suy ra d // BD.
Mà G3 ∈ (ABD) và G3 ∈ (G1G2G3) nên G3 là giao điểm của (G1G2G3) và (ABD).
Do đó giao tuyến d của hai mặt phẳng (G1G2G3) và (ABD) đi qua điểm G3 và song song với BD, cắt AB, AD lần lượt tại I và K.
Vậy (G1G2G3) ∩ (ABD) = IK.
Bài 4 trang 109 Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng.
a) Chứng minh rằng (AFD) // (BEC).
b) Gọi M là trọng tâm của tam giác ABE. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Lấy N là giao điểm của (P) và AC. Tính .
Lời giải:
a)
Ta có: BE // AF (do ABEF là hình bình hành);
AF ⊂ (AFD)
Do đó BE // (AFD).
Ta cũng có: BC // AD (do ABCD là hình bình hành)
AD ⊂ (AFD)
Do đó BC // (AFD).
Do BE // (AFD);
BC // (AFD);
BE, BC cắt nhau tại điểm B và cùng nằm trong mp(BEC)
Suy ra (AFD) // (BEC).
b)
+) Do (AFD) song song với (P) nên tồn tại hai đường thẳng trong (AFD) song song với (P).
• Trong mp(ABEF), qua điểm M vẽ đường thẳng song song với AF, đường thẳng này cắt AB, EF lần lượt tại I, J.
Khi đó IJ // AF, mà AF ⊂ (AFD) nên IJ // (AFD).
• Trong mp(ABCD), qua điểm I vẽ đường thẳng song song với AD, cắt CD tại K.
Khi đó IK // AD, mà AD ⊂ (AFD) nên IK // (AFD).
• Ta có: IJ // (AFD);
IK // (AFD);
IJ, IK cắt nhau tại điểm I và cùng nằm trong mp(IJK).
Do đó (IJK) // (AFD).
Mà M ∈ IJ, IJ ⊂ (IJK) nên mp (P) đi qua M và song song với (AFD) chính là mp(IJK).
+) Trong mp(ABCD), AC cắt IK tại N, khi đó N là giao điểm của AC và (P).
Trong mp(ABCD), xét DABC có IN // BC (do IK // AD // BC) nên theo định lí Thalès ta có: .
Trong mp(ABEF), xét DABF có IM // AF nên theo định lí Thalès ta có: .
Gọi O là tâm hình bình hành ABEF. Khi đó O là trung điểm của FB nên FO = OB.
Do M là trọng tâm của ABE nên và .
Ta có: .
Vậy .
Lời giải bài tập Toán 11 Bài 4: Hai mặt phẳng song song hay khác:
Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Cánh diều
- Giải Chuyên đề học tập Toán 11 Cánh diều
- Giải SBT Toán 11 Cánh diều
- Giải lớp 11 Cánh diều (các môn học)
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều