Giải Toán 11 trang 41 Tập 1 Cánh diều

Với Giải Toán 11 trang 41 Tập 1 trong Bài tập cuối chương 1 Toán 11 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 41.

Giải Toán 11 trang 41 Tập 1 Cánh diều

Quảng cáo

Bài 1 trang 41 Toán 11 Tập 1: Hàm số y = sinx đồng biến trên khoảng:

A. (0; π).

B. 3π2;π2 .

C. π2;π2.

D. (‒π; 0).

Lời giải:

Đáp án đúng là: C

Cách 1. Dựa vào đồ thị hàm số:

Đồ thị hàm số y = sinx (hình vẽ):

Bài 1 trang 41 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Quảng cáo

Quan sát đồ thị trên, ta thấy hàm số y = sinx đồng biến trên khoảng π2;π2 .

Cách 2. Dùng tính chất của hàm số y = sinx:

Hàm số y = sinx đồng biến trên mỗi khoảng π2+k2π;π2+k2π với k ∈ ℤ.

Do đó hàm số y = sinx đồng biến trên khoảng π2;π2 .

Bài 2 trang 41 Toán 11 Tập 1: Hàm số nghịch biến trên khoảng (π; 2π) là:

A. y = sinx.

B. y = cosx.

C. y = tanx.

D. y = cotx.

Quảng cáo

Lời giải:

Đáp án đúng là: D

Cách 1. Dùng đồ thị hàm số:

Xét đồ thị hàm số y = sinx:

Bài 2 trang 41 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Xét đồ thị hàm số y = cosx:

Bài 2 trang 41 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Quảng cáo

Xét đồ thị hàm số y = tanx:

Bài 2 trang 41 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Xét đồ thị hàm số y = cotx:

Bài 2 trang 41 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Quan sát các đồ thị trên, ta thấy hàm số y = cotx nghịch biến trên khoảng (π; 2π).

Cách 2. Dùng tính chất của hàm số lượng giác:

Do (π; 2π) = (0 + π; π + π)

Mà hàm số y = cotx nghịch biến trên mỗi khoảng (kπ; π + kπ) với k ∈ ℤ.

Do đó hàm số y = cotx nghịch biến trên khoảng (π; 2π).

Bài 3 trang 41 Toán 11 Tập 1: Nếu tan(a + b) = 3, tan(a – b) = ‒3 thì tan2a bằng:

A. 0.

B. 35 .

C. 1.

D. -34.

Lời giải:

Đáp án đúng là: A

Ta có:

tan2a = tan[(a + b) + (a – b)]

=tana+b+tanab1tana+btanab=3+313.3=0.

Bài 4 trang 41 Toán 11 Tập 1: Nếu cosa = 14 thì cos2a bằng:

A. 78 .

B. -78.

C. 1516 .

D. -1516.

Lời giải:

Đáp án đúng là: B

Ta có: cos2a = 2cos2a – 1 = 2.1421=2.1161=78.

Bài 5 trang 41 Toán 11 Tập 1: Nếu cosa = 35 và cosb = -45 thì cos(a + b)cos(a – b) bằng:

A. 0.

B. 2.

C. 4.

D. 5.

Lời giải:

Đáp án đúng là: A

Áp dụng công thức biến đổi tích thành tổng, ta có:

cos (a+b)cos(a-b) = 12[cos(a+b+a-b) + cos(a+b-a+b)]

= 12[cos2a + cos2b]

Ta lại có:

cos2a = 2cos2a – 1 = 2.3521=2.9251=725;

cos2b = 2cos2b – 1 = 2.4521=2.16251=725;

Do đó cos(a+b)cos(a-b) = 12[cos2a + cos2b] = 12.725+725=0.

Bài 6 trang 41 Toán 11 Tập 1: Nếu sina = 23 thì sina+π4+sinaπ4 bằng:

A. 23 .

B. 13 .

C. -23.

D. -13.

Lời giải:

Đáp án đúng là: C

Áp dụng công thức biến đổi tổng thành tích, ta có:

sina+π4+sinaπ4

= 2sina+π4+aπ42cosa+π4a+π42

= 2sinacosπ4=2.23.22=23.

Bài 7 trang 41 Toán 11 Tập 1: Số nghiệm của phương trình cosx = 0 trên đoạn [0; 10π] là:

A. 5.

B. 9.

C. 10.

D. 11.

Lời giải:

Đáp án đúng là: C

Cách 1. Giải phương trình lượng giác

cosx = 0

x = π2+kπ (k ∈ ℤ)

Do x ∈ [0; 10π] nên ta có: 0π2+kπ10π

0π2+k10 -12k192

Mà k ∈ ℤ nên k ∈ {0; 1; 2; …; 9}, khi đó ta tìm được 10 giá trị của x.

Vậy phương trình cosx = 0 có 10 nghiệm trên đoạn [0; 10π].

Cách 2. Dùng đồ thị hàm số

Bài 7 trang 41 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Quan sát đồ thị ta thấy đồ thị hàm số y = cosx cắt trục hoành tại 10 điểm A, B, C, …, K trên đoạn [0; 10π].

Vậy phương trình cosx = 0 có 10 nghiệm trên đoạn [0; 10π].

Bài 8 trang 41 Toán 11 Tập 1: Số nghiệm của phương trình sinx = 0 trên đoạn [0; 10π] là:

A. 10.

B. 6.

C. 5.

D. 11.

Lời giải:

Đáp án đúng là: D

Cách 1. Giải phương trình lượng giác

sinx = 0

x = kπ (k ∈ ℤ)

Do x ∈ [0; 10π] nên ta có: 0 ≤ kπ ≤ 10π

0 ≤ k ≤ 10

Mà k ∈ ℤ nên k ∈ {0; 1; 2; …; 10}, khi đó ta tìm được 11 giá trị của x.

Vậy phương trình sinx = 0 có 11 nghiệm trên đoạn [0; 10π].

Cách 2. Dùng đồ thị hàm số

Bài 8 trang 41 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Quan sát đồ thị ta thấy đồ thị hàm số y = sinx cắt trục hoành tại 11 điểm A ≡ O, B, C, …, M trên đoạn [0; 10π].

Vậy phương trình sinx = 0 có 11 nghiệm trên đoạn [0; 10π].

Bài 9 trang 41 Toán 11 Tập 1: Nghiệm của phương trình cotx = ‒1 là:

A. π4+kπ k .

B. π4+kπ k .

C. π4+k2π k .

D. -π4+k2π k.

Lời giải:

Đáp án đúng là: A

Ta có: cotx = ‒1

x=π4+kπ k.

Bài 10 trang 41 Toán 11 Tập 1: Số nghiệm của phương trình sinx+π4=22 trên đoạn [0; π] là:

A. 4.

B. 1.

C. 2.

D. 3.

Lời giải:

Đáp án đúng là: C

Cách 1. Giải phương trình lượng giác:

Ta có:

sinx+π4=22

sinx+π4=sinπ4

Bài 10 trang 41 Toán 11 Tập 1 | Cánh diều Giải Toán 11

• Do x ∈ [0; π] nên từ (1) ta có:

0 ≤ k2π ≤ π

0 ≤ 2k ≤ 1

0 ≤ k ≤ 12

Mà k ∈ ℤ nên k = 0, khi đó ta tìm được 1 giá trị của x (x = 0) trong trường hợp này.

• Do x ∈ [0; π] nên từ (2) ta có:

0 ≤ π2+k2ππ

0 ≤ 12+2k ≤ 1

122k1214k14

Mà k ∈ ℤ nên k = 0, khi đó ta tìm được 1 giá trị của x x=π2 trong trường hợp này.

Vậy phương trình sinx+π4=22 có hai nghiệm trên đoạn [0; π].

Cách 2. Dùng đồ thị hàm số

Đặt x+π4=α. Khi đó ta có phương trình sinα=22.

Xét đường thẳng y = 22 và đồ thị hàm số y = sinα trên đoạn [0; π]:

Bài 10 trang 41 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Từ đồ thị hàm số trên ta thấy đường thẳng y = 22 cắt đồ thị số y = sinα trên đoạn [0; π] tại hai điểm có hoành độ lần lượt là α1=π4α2=3π4.

Mà x+π4=α , khi đó ta sẽ tìm được 2 giá trị x là x1 = 0 và x2=π2.

Vậy phương trình sinx+π4=22 có hai nghiệm trên đoạn [0; π].

Lời giải bài tập Toán 11 Bài tập cuối chương 1 hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 Cánh diều khác
Tài liệu giáo viên