Giải Toán 11 trang 88 Tập 2 Cánh diều
Với Giải Toán 11 trang 88 Tập 2 trong Bài 2: Đường thẳng vuông góc với mặt phẳng Toán 11 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 88.
Giải Toán 11 trang 88 Tập 2 Cánh diều
Bài 1 trang 88 Toán 11 Tập 2: Quan sát Hình 30 (hai cột của biển báo, mặt đường), cho biết hình đó gợi nên tính chất nào về quan hệ vuông góc giữa đường thẳng và mặt phẳng.
Lời giải:
Quan sát Hình 30 ta thấy a // b, a và b cùng vuông góc với (P). Qua đó, một số các tính chất về quan hệ vuông góc giữa đường thẳng và mặt phẳng được gợi ra như sau:
⦁ Cho hai đường thẳng song song. Một mặt phẳng vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.
⦁ Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song với nhau.
Bài 2 trang 88 Toán 11 Tập 2: Cho hình chóp S.ABC. Gọi H là hình chiếu của S trên mặt phẳng (ABC).
a) Xác định hình chiếu của các đường thẳng SA, SB, SC trên mặt phẳng (ABC).
b) Giả sử BC ⊥ SA, CA ⊥ SB. Chứng minh rằng H là trực tâm của tam giác ABC và AB ⊥ SC.
Lời giải:
a) Ta có: H là hình chiếu của S trên mặt phẳng (ABC); A ∈ (ABC).
Suy ra HA là hình chiếu của SA trên mặt phẳng (ABC).
Tương tự ta có HB, HC lần lượt là hình chiếu của SB và SC trên mặt phẳng (ABC).
b) Do H là hình chiếu của S trên mặt phẳng (ABC) nên SH ⊥ (ABC).
Mà AB, AC, BC đều nằm trên (ABC).
Từ đó ta có: SH ⊥ AB, SH ⊥ AC, SH ⊥ BC.
· Ta có: BC ⊥ SH, BC ⊥ SA và SH ∩ SA = S trong (SAH).
Suy ra BC ⊥ (SAH).
Mà AH ⊂ (SAH) nên BC ⊥ AH. (1)
· Ta có: AC ⊥ SB, AC ⊥ SH và SB ∩ SH = S trong (SBH).
Suy ra AC ⊥ (SBH).
Mà BH ⊂ (SBH) nên AC ⊥ BH. (2)
Từ (1) và (2) ta có H là trực tâm của tam giác ABC.
Suy ra AB ⊥ CH.
· Ta có: AB ⊥ CH, AB ⊥ SH và CH ∩ SH = H trong (SCH).
Suy ra AB ⊥ (SCH).
Mà SC ⊂ (SCH) nên AB ⊥ SC.
Bài 3 trang 88 Toán 11 Tập 2: Cho tứ diện ABCD có AB ⊥ (BCD), các tam giác BCD và ACD là những tam giác nhọn. Gọi H, K lần lượt là trực tâm của các tam giác BCD, ACD (Hình 31). Chứng minh rằng:
a) CD ⊥ (ABH);
b) CD ⊥ (ABK);
c) Ba đường thẳng AK, BH, CD cùng đi qua một điểm.
Lời giải:
a) Ta có: AB ⊥ (BCD), CD ⊂ (BCD) nên AB ⊥ CD.
Do H là trực tâm của tam giác BCD nên BH ⊥ CD.
Ta có: CD ⊥ AB, CD ⊥ BH và AB ∩ BH = B trong (ABH).
Từ đó ta có: CD ⊥ (ABH).
b) Do K là trực tâm của tam giác ACD nên AK ⊥ CD.
Ta có: CD ⊥ AB, CD ⊥ AK và AB ∩ AK = A trong (ABK).
Từ đó ta có: CD ⊥ (ABK).
c) Theo tính chất “Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước” nên có duy nhất một mặt phẳng đi qua điểm A và vuông góc với CD.
Mà CD ⊥ (ABH), CD ⊥ (ABK).
Suy ra (ABH) ≡ (ABK).
Do: H là trực tâm của tam giác BCD nên BH giao với CD tại một điểm I;
K là trực tâm của tam giác ACD nên AK giao với CD tại một điểm I’.
Mà CD cắt (ABHK) tại một điểm.
Do đó I và I’ trùng nhau hay AK, BH, CD cùng đi qua một điểm.
Bài 4 trang 88 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy là hình bình hành. Tam giác ABC nhọn có trực tâm H là hình chiếu của S trên (ABCD). Chứng minh rằng:
a) SA ⊥ AD;
b) SC ⊥ CD.
Lời giải:
a) Ta có H là trực tâm của tam giác ABC nên AH ⊥ BC.
Hơn nữa BC // AD (do ABCD là hình bình hành).
Suy ra AH ⊥ AD.
Lại có H là hình chiếu của S trên (ABCD) nên HA là hình chiếu của SA trên (ABCD).
Do đó, theo định lí ba đường vuông góc ta có AD ⊥ SA hay SA ⊥ AD.
b) Ta có H là trực tâm của tam giác ABC nên CH ⊥ AB.
Hơn nữa AB // CD (do ABCD là hình bình hành).
Suy ra HC ⊥ CD.
Lại có H là hình chiếu của S trên (ABCD) nên HC là hình chiếu của SC trên (ABCD).
Do đó, theo định lí ba đường vuông góc ta có CD ⊥ SC hay SC ⊥ CD.
Bài 5 trang 88 Toán 11 Tập 2: Cho hình chóp S.ABCD có SA ⊥ (ABC), BC ⊥ AB. Lấy hai điểm M, N lần lượt là trung điểm của SB, SC và điểm P nằm trên cạnh SA. Chứng minh rằng tam giác MNP là tam giác vuông.
Lời giải:
Do SA ⊥ (ABC) hay SA ⊥ (ABCD) nên AB là hình chiếu của SB trên mặt phẳng (ABCD).
Mà BC ⊥ AB nên theo định lí ba đường vuông góc ta có BC ⊥ SB.
Xét ∆SBC có: M, N lần lượt là trung điểm của SB và SC nên MN là đường trung bình của ∆SBC. Do đó MN // BC.
Mà BC ⊥ SB nên SB ⊥ MN.
Do SA ⊥ (ABCD) và BC ⊂ (ABCD) suy ra SA ⊥ BC.
Mà MN // BC nên SA ⊥ MN.
Ta có: MN ⊥ SB, MN ⊥ SA và SB ∩ SA = S trong (SAB).
Suy ra MN ⊥ (SAB).
Hơn nữa PM ⊂ (SAB) nên MN ⊥ PM hay tam giác MNP là tam giác vuông tại M.
Lời giải bài tập Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng hay khác:
- Giải Toán 11 trang 80
- Giải Toán 11 trang 81
- Giải Toán 11 trang 82
- Giải Toán 11 trang 84
- Giải Toán 11 trang 85
- Giải Toán 11 trang 87
Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Toán 11 Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
Toán 11 Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Cánh diều
- Giải Chuyên đề học tập Toán 11 Cánh diều
- Giải SBT Toán 11 Cánh diều
- Giải lớp 11 Cánh diều (các môn học)
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều