Bài 7.24 trang 59 Toán 11 Tập 2 - Kết nối tri thức

Giải Toán 11 Bài 26: Khoảng cách - Kết nối tri thức

Bài 7.24 trang 59 Toán 11 Tập 2: Cho tứ diện ABCD có các cạnh đều bằng a. Gọi M, N tương ứng là trung điểm của các cạnh AB, CD. Chứng minh rằng:

a) MN là đường vuông góc chung của AB và CD.

b) Các cặp cạnh đối diện trong tứ diện ABCD đều vuông góc với nhau.

Quảng cáo

Lời giải:

Bài 7.24 trang 59 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Xét tam giác ADB có AD = BD = a nên tam giác ADB cân tại D.

Vì M là trung điểm của AB nên DM là trung tuyến.

Vì tam giác ADB cân tại D, DM là trung tuyến nên DM đồng thời là đường cao hay DM AB.

Xét tam giác ABC có AC = BC = a nên tam giác ABC cân tại C mà CM là trung tuyến nên CM là đường cao hay CM AB.

Vì DM AB và CM AB nên AB (DCM), suy ra AB MN.

Xét tam giác ADC có AD = AC = a nên tam giác ACD cân tại A mà AN là trung tuyến nên AN đồng thời là đường cao hay AN CD.

Xét tam giác BCD có BD = BC = a nên tam giác BCD cân tại B mà BN là trung tuyến nên BN đồng thời là đường cao hay BN CD.

Vì AN CD và BN CD nên CD (ABN), suy ra CD MN.

Vì AB MN và CD MN nên MN là đường vuông góc chung của AB và CD.

b) Vì AB (DCM) nên AB CD.

Bài 7.24 trang 59 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Gọi E là trung điểm của BC.

Xét tam giác ABC có AB = AC = a nên tam giác ABC cân tại A mà AE là trung tuyến nên AE đồng thời là đường cao hay AE BC.

Xét tam giác BDC có BD = CD = a nên tam giác BCD cân tại D mà DE là trung tuyến nên DE đồng thời là đường cao hay DE BC.

Có AE BC và DE BC nên BC (ADE), suy ra BC AD.

Gọi F là trung điểm của BD.

Xét tam giác ADB có AB = AD = a nên tam giác ADB cân tại A mà AF là trung tuyến nên AF đồng thời là đường cao hay AF BD.

Xét tam giác BCD có BC = CD = a nên tam giác BCD cân tại C mà CF là trung tuyến nên CF đồng thời là đường cao hay CF BD.

Vì AF BD và CF BD nên BD (ACF), suy ra BD AC.

Quảng cáo

Lời giải bài tập Toán 11 Bài 26: Khoảng cách hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 Kết nối tri thức khác
Tài liệu giáo viên