Bài 9 trang 64 Toán 12 Tập 2 Cánh diều
Giải Toán 12 Bài 1: Phương trình mặt phẳng - Cánh diều
Bài 9 trang 64 Toán 12 Tập 2:
a) Cho hai mặt phẳng (P1): x + 2y + 3z + 4 = 0, (P2): x + y – z + 5 = 0. Chứng minh rằng (P1) ⊥ (P2).
b) Cho mặt phẳng (P): x – 2y – 2z + 1 = 0 và điểm M(1; 1; – 6). Tính khoảng cách từ điểm M đến mặt phẳng (P).
Lời giải:
a) Hai mặt phẳng (P1) và (P2) có vectơ pháp tuyến lần lượt là và .
Vì = 1 ∙ 1 + 2 ∙ 1 + 3 ∙ (– 1) = 0 nên . Vậy (P1) ⊥ (P2).
b) Khoảng cách từ điểm M đến mặt phẳng (P) là:
d(M, (P)) =
Lời giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng hay, chi tiết khác:
Hoạt động 8 trang 57 Toán 12 Tập 2: Cho mặt phẳng (P1): 2x + 2y + 2z + 1 = 0 (1)....
Bài 2 trang 63 Toán 12 Tập 2: Mặt phẳng x + 2y – 3z + 4 = 0 có một vectơ pháp tuyến là: ...
Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Cánh diều
- Giải Chuyên đề học tập Toán 12 Cánh diều
- Giải SBT Toán 12 Cánh diều
- Giải lớp 12 Cánh diều (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều