Bài 9 trang 64 Toán 12 Tập 2 Cánh diều

Giải Toán 12 Bài 1: Phương trình mặt phẳng - Cánh diều

Bài 9 trang 64 Toán 12 Tập 2:

a) Cho hai mặt phẳng (P1): x + 2y + 3z + 4 = 0, (P2): x + y – z + 5 = 0. Chứng minh rằng (P1) ⊥ (P2).

Quảng cáo

b) Cho mặt phẳng (P): x – 2y – 2z + 1 = 0 và điểm M(1; 1; – 6). Tính khoảng cách từ điểm M đến mặt phẳng (P). 

Lời giải:

a) Hai mặt phẳng (P1) và (P2) có vectơ pháp tuyến lần lượt là n1=1;2;3n2=1;1;1.

n1n2= 1 ∙ 1 + 2 ∙ 1 + 3 ∙ (– 1) = 0  nên n1  n2 . Vậy (P1) ⊥ (P2).

b) Khoảng cách từ điểm M đến mặt phẳng (P) là:

d(M, (P)) = 112126+112+22+22=4

Quảng cáo

Lời giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Cánh diều khác
Tài liệu giáo viên