Luyện tập 5 trang 60 Toán 12 Tập 1 Cánh diều

Giải Toán 12 Bài 1: Vectơ và các phép toán vectơ trong không gian - Cánh diều

Luyện tập 5 trang 60 Toán 12 Tập 1: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD và BC, I là trung điểm MN. Chứng minh rằng:

a) MN=12AB+DC ;

b) IA+IB+IC+ID=0 .

Quảng cáo

Lời giải:

Luyện tập 5 trang 60 Toán 12 Cánh diều Tập 1 | Giải Toán 12

a) Vì N là trung điểm của BC nên với điểm M, ta có MN=12MB+MC.

Theo quy tắc ba điểm ta có: MB=MA+AB,  MC=MD+DC.

Lại có M là trung điểm của AD nên MA+MD=0.

Từ đó ta suy ra 

Luyện tập 5 trang 60 Toán 12 Cánh diều Tập 1 | Giải Toán 12

Vậy MN=12AB+DC.

b) Vì M, N lần lượt là trung điểm của các cạnh AD và BC nên ta có:

IA+ID=2IM,  IB+IC=2IN.

Do đó, IA+IB+IC+ID=2IM+IN.

Vì I là trung điểm MN nên IM+IN=0.

Từ đó suy ra IA+IB+IC+ID=0.

Quảng cáo

Lời giải bài tập Toán 12 Bài 1: Vectơ và các phép toán vectơ trong không gian hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Cánh diều khác