Giải Toán 12 trang 102 Tập 2 Cánh diều
Với Giải Toán 12 trang 102 Tập 2 trong Bài 2: Công thức xác suất toàn phần. Công thức Bayes Toán 12 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 102.
Giải Toán 12 trang 102 Tập 2 Cánh diều
Bài 1 trang 102 Toán 12 Tập 2: Cho hai biến cố A, B với P(B) = 0,6; P(A | B) = 0,7 và P(A | ) = 0,4. Khi đó, P(A) bằng:
A. 0,7.
B. 0,4.
C. 0,58.
D. 0,52.
Lời giải:
Đáp án đúng là: C
Ta có P(B) = 0,6. Suy ra P( ) = 1 – P(B) = 1 – 0,6 = 0,4.
Áp dụng công thức xác suất toàn phần, ta có:
P(A) = P(B) ∙ P(A | B) + P( ) ∙ P(A | ) = 0,6 ∙ 0,7 + 0,4 ∙ 0,4 = 0,58.
Bài 2 trang 102 Toán 12 Tập 2: Có hai chiếc hộp, hộp I có 5 viên bi màu trắng và 5 viên bi màu đen, hộp II có 6 viên bi màu trắng và 4 viên bi màu đen, các viên bi có cùng kích thước và khối lượng. Lấy ngẫu nhiên một viên bi từ hộp I bỏ sang hộp II.
Sau đó lấy ngẫu nhiên một viên bi từ hộp II.
a) Tính xác suất để viên bi được lấy ra từ hộp II là viên bi màu trắng.
b) Giả sử viên bi được lấy ra từ hộp II là viên bi màu trắng. Tính xác suất viên bi màu trắng đó thuộc hộp I.
Lời giải:
a) Xét hai biến cố:
A: “Viên bi được lấy ra từ hộp I bỏ sang hộp II là màu trắng”;
B: “Viên bi được lấy ra từ hộp II là viên bi màu trắng”.
Theo bài ra ta có: P(A) = ; P( ) = 1 – P(A) = .
P(B | A) = ; .
Áp dụng công thức xác suất toàn phần, ta có:
P(B) = P(A) ∙ P(B | A) + P( ) ∙ P(B | ) = .
Vậy xác suất để viên bi được lấy ra từ hộp II là viên bi màu trắng là .
b) Nếu viên bi được lấy ra từ hộp II là viên bi màu trắng thì xác suất viên bi màu trắng đó thuộc hộp I là: P(A | B) = .
Vậy nếu viên bi được lấy ra từ hộp II là viên bi màu trắng thì xác suất viên bi màu trắng đó thuộc hộp I là
Bài 3 trang 102 Toán 12 Tập 2: Một loại linh kiện do hai nhà máy số I, số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I, II lần lượt là: 4%; 3%. Trong một lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó.
a) Tính xác suất để linh kiện được lấy ra là linh kiện tốt.
b) Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?
Lời giải:
a) Xét hai biến cố:
A: “Linh kiện được lấy ra từ lô hàng là linh kiện tốt”;
B: “Linh kiện được lấy ra từ lô hàng do nhà máy I sản xuất”.
Vì lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II nên P(B) = , suy ra .
Vì tỉ lệ phế phẩm của các nhà máy I, II lần lượt là: 4%; 3% nên tỉ lệ thành phẩm (linh kiện tốt) của các nhà máy I, II lần lượt là 96%; 97%.
Do đó P(A | B) = 0,96 và P(A | ) = 0,97.
Áp dụng công thức xác suất toàn phần, ta có xác suất để linh kiện được lấy ra là linh kiện tốt là:
P(A) = P(B) ∙ P(A | B) + P( ) ∙ P(A | ) = 0,4 ∙ 0,96 + 0,6 ∙ 0,97 = 0,966.
b) Xét biến cố C: “Linh kiện được lấy ra từ lô hàng là linh kiện phế phẩm”.
Khi đó, ta có C = . Suy ra P(C) = P( ) = 1 – P(A) = 1 – 0,966 = 0,034.
Theo bài ra ta có: P(C | B) = 4% = 0,04.
Do đó, nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất sản phẩm đó do nhà máy I sản xuất là: P(B | C) = .
Nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất sản phẩm đó do nhà máy II sản xuất là: P( | C) = 1 – P(B | C) = .
Vì nên nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất linh kiện đó do nhà máy II sản xuất là cao hơn.
Bài 4 trang 102 Toán 12 Tập 2: Năm 2001, Cộng đồng châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Không có xét nghiệm nào cho kết quả chính xác 100%. Một loại xét nghiệm, mà ở đây ta gọi là xét nghiệm A, cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để có phản ứng dương tính trong xét nghiệm A là 70%, còn khi con bò không bị bệnh thì xác suất để có phản ứng dương tính trong xét nghiệm A là 10%. Biết rằng tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 13 con trên 1 000 000 con (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics – Understanding why and how, Springer, 2005). Hỏi khi một con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A thì xác suất để nó bị mắc bệnh bò điên là bao nhiêu?
Lời giải:
Xét hai biến cố:
A: “Con bò được chọn ra không bị mắc bệnh bò điên”.
B: “Con bò được chọn ra có phản ứng dương tính”.
Vì tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 13 con trên 1 000 000 con nên tỉ lệ bò mắc bệnh bò điên ở Hà Lan là P() = 0,000013.
Suy ra P(A) = 1 – 0,000013 = 0,999987.
Trong số những con bò không bị mắc bệnh thì xác suất để có phản ứng dương tính trong xét nghiệm A là 10%, suy ra P(B | A) = 0,1.
Khi con bò mắc bệnh bò điên thì xác suất để có phản ứng dương tính trong xét nghiệm A là 70% nên P(B | ) = 0,7.
Ta thấy xác suất mắc bệnh bò điên của một con bò ở Hà Lan xét nghiệm có phản ứng dương tính với xét nghiệm A chính là P( | B). Áp dụng công thức Bayes, ta có:
.
Vậy khi một con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A thì xác suất để nó bị mắc bệnh bò điên là 0,000091.
Lời giải bài tập Toán 12 Bài 2: Công thức xác suất toàn phần. Công thức Bayes hay khác:
Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Cánh diều
- Giải Chuyên đề học tập Toán 12 Cánh diều
- Giải SBT Toán 12 Cánh diều
- Giải lớp 12 Cánh diều (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều