Bài 4 trang 51 Toán 12 Tập 1 Chân trời sáng tạo
Giải Toán 12 Bài 1: Vectơ và các phép toán trong không gian - Chân trời sáng tạo
Bài 4 trang 51 Toán 12 Tập 1: Cho hình chóp S.ABCD. Gọi I là trọng tâm của tam giác ABC và J là trọng tâm tam giác ADC. Chứng minh rằng 2→SA+→SB+2→SC+→SD=3(SI+→SJ).
Lời giải:
Vì I là trọng tâm của DABC nên →IA+→IB+→IC=→0
⇔→SA−→SI+→SB−→SI+→SC−→SI=→0
⇔→SA+→SB+→SC=3→SI (1).
Tương tự, →SA+→SD+→SC=3→SJ (2).
Cộng từng vế (1) và (2), ta có: 2→SA+→SB+2→SC+→SD=3(SI+→SJ).
Lời giải bài tập Toán 12 Bài 1: Vectơ và các phép toán trong không gian hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Toán 12 Bài 1: Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm
Toán 12 Bài 2: Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải SBT Toán 12 Chân trời sáng tạo
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST