Bài 1.8 trang 14 Toán 12 Tập 1 - Kết nối tri thức

Giải Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số - Kết nối tri thức

Bài 1.8 trang 14 Toán 12 Tập 1: Cho hàm số y = f(x) = |x|.

Quảng cáo

a) Tính các giới hạn limx0+fxf0x0limx0fxf0x0.

Từ đó suy ra hàm số không có đạo hàm tại x = 0.

b) Sử dụng định nghĩa, chứng minh hàm số có cực tiểu tại x = 0 (xem hình 1.4).

Lời giải:

a) limx0+fxf0x0=limx0+x0x0=limx0+xx=1.

limx0fxf0x0=limx0x0x0=limx0xx=1.

Do limx0+fxf0x0limx0fxf0x0 nên hàm số không có đạo hàm tại x = 0.

b) Theo định nghĩa, hàm số f(x) đạt cực tiểu tại x = x0 nếu tồn tại số h > 0 sao cho f(x) > f(x0) với mọi x ∈ (x0 – h; x0 + h) và  x ≠ x0 .

Ở đây, x0 = 0. Ta sẽ chứng minh rằng tồn tại số h > 0 sao cho f(x) > f(0) với mọi x ∈ (– h; h).

Với mọi x ∈ (– h; h), ta có |x| < h.

Mà |x| > 0, với mọi x ≠ 0. Do đó f(x) = |x| > 0 = f(0), với mọi x ∈ (– h; h) và x ≠ 0.

Vậy ta chứng minh được rằng với mọi x ∈ (– h; h) và x ≠ x0, f(x) > f(0). Điều này chứng tỏ rằng hàm số có cực tiểu tại x = 0.

Quảng cáo

Lời giải bài tập Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Kết nối tri thức khác
Tài liệu giáo viên