HĐ10 trang 38 Toán 12 Tập 2 - Kết nối tri thức

Giải Toán 12 Bài 14: Phương trình mặt phẳng - Kết nối tri thức

HĐ10 trang 38 Toán 12 Tập 2: Trong không gian Oxyz, cho điểm M(x0; y0; z0) và mặt phẳng (P): Ax + By + Cz + D = 0 có vectơ pháp tuyến n=A;B;C. Gọi N là hình chiếu vuông góc của M trên (P) (H.5.13).

Quảng cáo

a) Giải thích vì sao tồn tại số k để MN=kn. Tính tọa độ của N theo k, tọa độ của M và các hệ số A, B, C, D.

b) Thay tọa độ của N vào phương trình mặt phẳng (P) để từ đó tính k theo tọa độ của M và các hệ số A, B, C, D.

c) Từ MN=kn, hãy tính độ dài của đoạn thẳng MN theo tọa độ của M và các hệ số A, B, C, D. Từ đó suy ra công thức tính khoảng cách từ điểm M đến mặt phẳng (P).

HĐ10 trang 38 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a) Vì N là hình chiếu vuông góc của M trên (P) nên MN(P)

Do đó MN sẽ cùng phương với vectơ pháp tuyến n

Vậy tồn tại một số k sao cho MN=kn

Giả sử N(x1; y1; z1). Suy ra MN=x1x0;y1y0;z1z0

MN=kn nên x1x0=kAy1y0=kBz1z0=kCx1=x0+kAy1=y0+kBz1=z0+kC

b) Thay tọa độ điểm N vào (P), ta được

A(x0 + kA) + B(y0 + kB) + C(z0 + kC) + D = 0

⇔ k(A2 + B2 + C2) + Ax0 + By0 + Cz0 + D = 0

k=Ax0By0Cz0DA2+B2+C2

c) Ta có MN=knMN=kA2+B2+C2

k=Ax0By0Cz0DA2+B2+C2 nên MN=Ax0By0Cz0DA2+B2+C2A2+B2+C2

MN=Ax0+By0+Cz0+DA2+B2+C2

Do đó khoảng cách từ điểm M đến mặt phẳng (P) là d=Ax0+By0+Cz0+DA2+B2+C2

Quảng cáo

Lời giải bài tập Toán 12 Bài 14: Phương trình mặt phẳng hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Kết nối tri thức khác
Tài liệu giáo viên