Giải Toán 12 trang 62 Tập 2 Kết nối tri thức

Với Giải Toán 12 trang 62 Tập 2 trong Bài tập cuối chương 5 Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 62.

Giải Toán 12 trang 62 Tập 2 Kết nối tri thức

Quảng cáo

Bài 5.38 trang 62 Toán 12 Tập 2: Trong không gian Oxyz, cho mặt cầu (S): (x + 1)2 + y2 + (z – 3)2 = 4. Tọa độ tâm I và bán kính R của (S) lần lượt là

A. I(1; 0; 3), R = 4.

B. I(1; 0; 3), R = 2.

C. I(−1; 0; 3), R = 2.

D. I(−1; 0; 3), R = 4.

Lời giải:

Đáp án đúng là: C

Mặt cầu (S): (x + 1)2 + y2 + (z – 3)2 = 4 có tâm I(−1; 0; 3) và R = 2.

Bài 5.39 trang 62 Toán 12 Tập 2: Trong không gian Oxyz, cho mặt cầu (S): x2 + y2 + z2 – 2x + 4y + 2z – 3 = 0. Tọa độ tâm I và bán kính R của mặt cầu (S) lần lượt là

A. I(1; −2; −1), R = 3.

B. I(1; 2; 1), R = 9.

C. I(1; 2; 1), R = 3.

D. I(1; −2; −1), R = 9.

Quảng cáo

Lời giải:

Đáp án đúng là: A

Mặt cầu (S): x2 + y2 + z2 – 2x + 4y + 2z – 3 = 0 có tâm I(1; −2; −1) và R=12+22+12+3=3

Bài 5.40 trang 62 Toán 12 Tập 2: Trong không gian Oxyz, cho ba điểm A(1; 0; −1), B(0; 1; 2), C(−1; −2; 3).

a) Viết phương trình mặt phẳng (ABC).

b) Viết phương trình đường thẳng AC.

c) Viết phương trình mặt cầu đường kính AC.

Lời giải:

Ta có AB=1;1;3,AC=2;2;4AB,AC=10;2;4

a) Mặt phẳng (ABC) nhận n=12AB,AC=5;1;2 làm một vectơ pháp tuyến và đi qua điểm A(1; 0; −1) có phương trình là:

5(x – 1) – y + 2(z + 1) = 0 hay 5x – y + 2z – 3 = 0.

b) Đường thẳng AC đi qua điểm A(1; 0; −1) và nhận u=12AC=1;1;2 làm một vectơ chỉ phương có phương trình là: x=x=1+ty=tz=12t

c) Gọi I là trung điểm của AC. Khi đó I(0; −1; 1).

Bán kính mặt cầu R=AC2=22+22+422=6

Phương trình mặt cầu đường kính AC là: x2 + (y + 1)2 + (z – 1)2 = 6.

Quảng cáo

Bài 5.41 trang 62 Toán 12 Tập 2: Trong không gian Oxyz, cho đường thẳng d:x=1+ty=2+tz=42t. Viết phương trình mặt phẳng (P) chứa đường thẳng d và gốc tọa độ O.

Lời giải:

Đường thẳng d đi qua A(1; −2; 4) và có một vectơ chỉ phương u=1;1;2

Có OA=1;2;4OA,u=0;6;3

Mặt phẳng (P) đi qua gốc tọa độ và nhận n=13OA,u=0;2;1 làm một vectơ pháp tuyến có phương trình là: 2y + z = 0.

Bài 5.42 trang 62 Toán 12 Tập 2: Trong không gian Oxyz, cho mặt phẳng (P): x – 2y + 2z – 1 = 0 và hai điểm A(1; −1; 2), B(−1; 1; 0).

a) Tính khoảng cách từ A đến mặt phẳng (P).

b) Viết phương trình mặt phẳng (Q) đi qua A và song song với mặt phẳng (P).

c) Viết phương trình mặt phẳng (R) chứa A, B và vuông góc với mặt phẳng (P).

Lời giải:

a) dA,P=12.1+2.21+22+22=73

b) Mặt phẳng (P): x – 2y + 2z – 1 = 0 có một vectơ pháp tuyến là n=1;2;2

Quảng cáo

Vì (Q) // (P) nên mặt phẳng (Q) nhận n=1;2;2 làm một vectơ pháp tuyến.

Phương trình mặt phẳng (Q) là: x – 1 – 2(y + 1) + 2(z – 2) = 0 hay x – 2y + 2z – 7 = 0.

c) Ta có AB=2;2;2

Mặt phẳng (P): x – 2y + 2z – 1 = 0 có một vectơ pháp tuyến là n=1;2;2

Có AB,n=0;2;2

Mặt phẳng (R) đi qua A(1; −1; 2) và nhận nR=12AB,n=0;1;1 làm một vectơ pháp tuyến có phương trình là: y + 1 + z – 2 = 0 hay y + z – 1 = 0.

Bài 5.43 trang 62 Toán 12 Tập 2: Trong không gian Oxyz, cho điểm A(1; 0; 2) và hai đường thẳng d:x1=y12=z2d':x+12=y+22=z31

a) Xét vị trí tương đối của hai đường thẳng d và d'.

b) Viết phương trình đường thẳng ∆ đi qua A và song song với đường thẳng d.

c) Viết phương trình mặt phẳng (P) chứa A và d.

d) Tìm giao điểm của đường thẳng d với mặt phẳng (Oxz).

Lời giải:

a) Đường thẳng d đi qua điểm M(0; 1; 0) và có một vectơ chỉ phương u1=1;2;2

Đường thẳng d' đi qua điển N(−1; −2; 3) và có một vectơ chỉ phương u2=2;2;1

Có MN=1;3;3u1,u2=6;5;20

Có MN.u1,u2=6156=150

Suy ra d và d' chéo nhau.

b) Vì ∆ // d nên đường thẳng ∆ nhận u1=1;2;2 làm một vectơ chỉ phương.

Đường thẳng ∆ đi qua A(1; 0; 2) và nhận u1=1;2;2 làm một vectơ chỉ phương có phương trình là x=1+ty=2tz=2+2t

c) Có AM=1;1;2AM,u1=6;0;3

Mặt phẳng (P) đi qua A(1; 0; 2) và nhận n=13AM,u1=2;0;1 làm một vectơ pháp tuyến có phương trình là: 2(x – 1) – (z – 2) = 0 hay 2x – z = 0.

d) Mặt phẳng (Oxz) có phương trình là: y = 0.

Tọa độ giao điểm của đường thẳng d với mặt phẳng (Oxz) là nghiệm của hệ:

x1=y12=z2y=0x=12y=0z=1

Vậy giao điểm cần tìm có tọa độ là 12;0;1

Bài 5.44 trang 62 Toán 12 Tập 2: Trong không gian Oxyz, cho mặt phẳng (P): x – 2y – 2z – 3 = 0 và đường thẳng d:x12=y+11=z1. Viết phương trình mặt phẳng (Q) chứa d và vuông góc với mặt phẳng (P).

Lời giải:

Đường thẳng d đi qua điểm A(1; −1; 0) và có một vectơ chỉ phương là u=2;1;1

Mặt phẳng (P) có một vectơ pháp tuyến là n=1;2;2

Có u,n=4;3;5

Mặt phẳng (Q) đi qua điểm A(1; -1; 0) và nhận u,n=4;3;5 làm một vectơ pháp tuyến có phương trình là: −4(x – 1) + 3(y + 1) −5z = 0 hay 4x – 3y + 5z – 7 = 0.

Lời giải bài tập Toán 12 Bài tập cuối chương 5 hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Kết nối tri thức khác
Tài liệu giáo viên