Giải Toán 12 trang 80 Tập 2 Kết nối tri thức

Với Giải Toán 12 trang 80 Tập 2 trong Bài tập cuối chương 6 Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 80.

Giải Toán 12 trang 80 Tập 2 Kết nối tri thức

Quảng cáo

Bài 6.19 trang 80 Toán 12 Tập 2: Một nhóm có 25 học sinh, trong đó có 14 em học khá môn Toán, 16 em học khá môn Vật lí, 1 em không học khá cả hai môn Toán và môn Vật lí. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó:

a) Học khá môn Toán, đồng thời học khá môn Vật lí;

b) Học khá môn Toán, nhưng không học khá môn Vật lí;

c) Học khá môn Toán, biết rằng học sinh đó học khá môn Vật lí.

Lời giải:

Gọi A là biến cố: “Học sinh đó học khá môn Toán”;

 B là biến cố: “Học sinh đó học khá môn Vật lí”.

Từ bài ra ta có PA=1425PB=1625PA¯B¯=125

a) Ta cần tính P(AB). Ta có P(AB) = P(A) + P(B) – P(A ∪ B).

Lại có PAB=1PA¯B¯=1125=2425

Vậy có P(AB) = P(A) + P(B) – P(A ∪ B) =1425+16252425=625.

b) Cần tính  PAB¯. Vì AB và AB¯ là hai biến cố xung khắc và A=ABAB¯ nên ta có PA=PAB+PAB¯.

Suy ra PAB¯=PAPAB=1425625=825

Quảng cáo

c) Xác suất để học sinh được chọn học khá môn Toán, biết rằng học sinh đó học khá môn Vật lí chính là xác suất có điều kiện P(A | B).

Ta có PA|B=PABPB=616=38

Bài 6.20 trang 80 Toán 12 Tập 2: Chuồng I có 5 con gà mái, 2 con gà trống. Chuồng II có 3 con gà mái, 5 con gà trống. Bác Mai bắt một con gà trong số đó theo cách sau: “Bác tung một con xúc xắc cân đối, đồng chất. Nếu số chấm chia hết cho 3 thì bác chọn chuồng I. Nếu số chấm không chia hết cho 3 thì bác chọn chuồng II. Sau đó, từ chuồng đã chọn bác bắt ngẫu nhiên một con gà”. Tính xác suất để bác Mai bắt được con gà mái.

Lời giải:

Gọi A là biến cố: “Chọn chuồng I”;

 B là biến cố: “Bắt được gà mái”.

Vì nếu tung xúc xắc mà số chấm xuất hiện chia hết cho 3 thì bác chọn chuồng I nên ta có PA=26=13. Suy ra PA¯=1 PA=23.

Từ dữ kiện bài ra, ta suy ra được: PB|A=57PB|A¯=38

Áp dụng công thức xác suất toàn phần, ta có:  

Quảng cáo

P(B) = P(A) ∙ P(B | A) + PA¯.PB|A¯=1357+2338=41840,4881

Vậy xác suất để bác Mai bắt được con gà mái là 0,4881.

Bài 6.21 trang 80 Toán 12 Tập 2: Một loại vaccine được tiêm ở địa phương X. Người có bệnh nền thì với xác suất 0,35 có phản ứng phụ sau tiêm; người không có bệnh nền thì chỉ có phản ứng phụ sau tiêm với xác suất 0,16. Chọn ngẫu nhiên một người được tiêm vaccine và người này có phản ứng phụ. Tính xác suất để người này có bệnh nền, biết rằng tỉ lệ người có bệnh nền ở địa phương X là 18%.

Lời giải:

Gọi A là biến cố: “Người đó có bệnh nền”;

 B là biến cố: “Người đó có phản ứng phụ sau tiêm”.

Theo bài ra ta có P(A) = 18% = 0,18; PA¯=1PA=0,82

       P(B | A) = 0,35; PB|A¯= 0,16.

Ta cần tính P(A | B). Theo công thức Bayes ta có

PA|B=PAPB|APAPB|A+PA¯PB|A¯

=0,180,350,180,35+0,820,16=0,0630,19420,3244

Vậy khi chọn ngẫu nhiên một người được tiêm vaccine và người này có phản ứng phụ thì xác suất để người này có bệnh nền là 0,3244.

Quảng cáo

Lời giải bài tập Toán 12 Bài tập cuối chương 6 hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Kết nối tri thức khác
Tài liệu giáo viên