Giải Toán 7 trang 75 Tập 2 Chân trời sáng tạo
Với Giải Toán 7 trang 75 Tập 2 trong Bài 7: Tính chất ba đường trung tuyến của tam giác Toán 7 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 7 dễ dàng làm bài tập Toán 7 trang 75.
Giải Toán 7 trang 75 Tập 2 Chân trời sáng tạo
Thực hành 2 trang 75 Toán 7 Tập 2: Trong Hình 7, G là trọng tâm của tam giác AEF với đường trung tuyến AM.
Hãy tính các tỉ số:
a) ;
b) ;
c) .
Lời giải:
a) Do G là trọng tâm của tam giác ABC nên AG = AM.
Khi đó GM = AM - AG = AM - AM = AM.
Do đó .
b) Do GM = AM và AG = AM nên GM : AG = AM : AM = .
Do đó .
c) Do nên = 2.
Vận dụng 2 trang 75 Toán 7 Tập 2: Cho tam giác ABC có O là trung điểm của BC, trên tia đối của tia OA, lấy điểm D sao cho OA = OD. Gọi I và J lần lượt là trọng tâm các tam giác ABC và DBC. Chứng minh rằng AI = IJ = JD.
Lời giải:
Do O là trung điểm của BC nên AO là đường trung tuyến của tam giác ABC, DO là đường trung tuyến của tam giác DBC.
Do I là trọng tâm của tam giác ABC nên I nằm trên AO sao cho AI = AO.
Do J là trọng tâm của tam giác DBC nên J nằm trên DO sao cho DJ = DO.
Mà OA và OD là hai tia đối nhau nên A, I, O, J, D thẳng hàng.
Do AI = AO nên OI = AO.
Do DJ = DO nên OJ = DO.
Do AO = DO và I, O, J thẳng hàng nên IJ = OI + OJ = AO.
Khi đó AI = AO, IJ = AO, DJ = AO nên AI = IJ = JD.
Bài 1 trang 75 Toán 7 Tập 2: Quan sát Hình 8. Thay bằng số thích hợp.
EG = EM;GM = EM;GM = EG;
FG = GN;FN = GN;FN = FG.
Lời giải:
Ta thấy G là giao điểm hai đường trung tuyến của tam giác EFH nên G là trọng tâm của tam giác EFH.
Do đó EG = EM.
Suy ra GM = EM - EG = EM - EM = EM.
Khi đó GM : EG = EM : EM = .
FG = FN, do đó GN = FN - FG = FN - FN = FN.
Khi đó FG : GN = FN : FN = 2.
GN = FN nên FN = 3GN.
FG = FN nên FN = FG.
Ta điền như sau:
EG = EM;GM = EM;GM = EG;
FG = 2GN;FN = 3GN;FN = FG.
Bài 2 trang 75 Toán 7 Tập 2: Quan sát Hình 9.
a) Biết AM = 15 cm, tính AG.
b) Biết GN = 6 cm, tính CN.
Lời giải:
a) G là giao điểm hai đường trung tuyến của tam giác ABC nên G là trọng tâm của tam giác ABC.
Do đó AG = AM = . 15 = 10 cm.
b) Do G là trọng tâm của tam giác ABC nên GN = >CN.
Do đó CN = 3GN = 3.6 = 18 cm.
Bài 3 trang 75 Toán 7 Tập 2: Cho tam giác ABC. Hai đường trung tuyến AM và CN cắt nhau tại G. Trên tia đối của tia MA lấy điểm E sao cho ME = MG.
a) Chứng minh rằng BG song song với EC.
b) Gọi I là giao điểm của BM và CN, đường thẳng AI cắt BC tại H. Chứng minh H là trung điểm của BC.
Lời giải:
a) Do AM là đường trung tuyến của tam giác ABC nên M là trung điểm của BC.
Do đó BM = CM.
Xét △BMG và △CME có:
BM = CM (chứng minh trên).
(đối đỉnh).
MG = ME (theo giả thiết).
Do đó △BMG = △CME (c.g.c).
Suy ra (2 góc tương ứng).
Mà hai góc này ở vị trí so le trong nên BG // EC.
b) Do G là trọng tâm của tam giác ABC nên AG = 2GM.
Lại có ME = GM và G, M, E thẳng hàng nên GE = GM + ME = 2GM.
Suy ra AG = GE.
Do đó G là trung điểm của AE.
Tam giác ABE có hai đường trung tuyến AI và BG cắt nhau tại F nên F là trọng tâm của tam giác ABE.
Do đó AF = 2FI.
Bài 4 trang 75 Toán 7 Tập 2: Cho tam giác ABC cân tại A có BM và CN là hai đường trung tuyến.
a) Chứng minh rằng BM = CN.
b) Gọi I là giao điểm của BM và CN, đường thẳng AI cắt BC tại H. Chứng minh H là trung điểm của BC.
Lời giải:
a) Do tam giác ABC cân tại A nên AB = AC và .
Do BM và CN là các đường trung tuyến của tam giác ABC nên M và N là lần lượt là trung điểm của AC và AB.
Khi đó BN = AB, CM = AC.
Mà AB = AC nên BN = CM.
Xét và có:
MC = NB (chứng minh trên).
(chứng minh trên).
BC chung.
Do đó (c.g.c).
Suy ra BM = NC (2 cạnh tương ứng).
b) Tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại I nên I là trọng tâm của tam giác ABC.
Khi đó AI đi qua trung điểm của BC.
Mà AI cắt BC tại H nên H là trung điểm của BC.
Lời giải bài tập Toán 7 Bài 7: Tính chất ba đường trung tuyến của tam giác hay khác:
Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Chân trời sáng tạo
- Giải SBT Toán 7 Chân trời sáng tạo
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải bài tập Toán lớp 7 của chúng tôi được biên soạn bám sát sgk Toán 7 Tập 1 & Tập 2 bộ sách Chân trời sáng tạo (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST