Giải Toán 8 trang 69 Tập 1 Chân trời sáng tạo
Với Giải Toán 8 trang 69 Tập 1 trong Bài 3: Hình thang – Hình thang cân Toán 8 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 8 dễ dàng làm bài tập Toán 8 trang 69.
Giải Toán 8 trang 69 Tập 1 Chân trời sáng tạo
Thực hành 1 trang 69 Toán 8 Tập 1: Tìm các góc chưa biết của hình thang MNPQ có hai đáy là MN và QP trong mỗi trường hợp sau và nêu nhận xét của em.
a) và .
b) .
Lời giải:
a)
Xét hình thang MNPQ (MN // QP) có nên là hình thang vuông.
Suy ra .
Áp dụng định lí tổng các góc của một tứ giác, ta có:
Suy ra
Do đó .
Vậy các góc chưa biết của hình thang MNPQ là .
b)
Xét hình thang MNPQ (MN // QP) có nên là hình thang cân.
Suy ra .
Vậy các góc chưa biết của hình thang MNPQ là .
Vận dụng 1 trang 69 Toán 8 Tập 1: Một mặt tường của chân tháp cột cờ Hà Nội có dạng hình thang cân ABCD (Hình 4). Cho biết . Tìm số đo và .
Lời giải:
Hình thang cân ABCD có nên:
.
Vận dụng 2 trang 69 Toán 8 Tập 1: Tứ giác EFGH có các góc cho như trong Hình 5.
a) Chứng minh rằng EFGH là hình thang.
b) Tìm góc chưa biết của tứ giác.
Lời giải:
a) Ta có (hai góc kề bù)
Suy ra
Do đó
Mà hai góc này ở vị trí so le trong nên HE // GF.
Xét tứ giác EFGH có HE // GF nên là hình thang.
b) Xét hình thang EFGH có: (tổng các góc của một tứ giác).
Suy ra
Do đó .
Vậy góc chưa biết của tứ giác EFGH là .
Khám phá 2 trang 69 Toán 8 Tập 1: a) Cho hình thang cân ABCD có hai đáy là AB và CD (AB > CD). Qua C vẽ đường thẳng song song với AD và cắt AB tại E (Hình 6a).
i) Tam giác CEB là tam giác gì? Vì sao?
ii) So sánh AD và BC.
b) Cho hình thang cân MNPQ có hai đáy là MN và PQ (Hỉnh 6b). So sánh MP và NQ. Giải thích.
Lời giải:
a)
i) Xét hình thang cân ABCD (AB // DC) có .
Vì CE // AD nên (đồng vị).
Do đó .
Xét DCEB có nên là tam giác cân tại C.
ii) Do DCEB cân tại C (câu i) nên CE = CB (1)
Xét DADE và DCED có:
(hai góc so le trong của AD // CE);
DE là cạnh chung;
(hai góc so le trong của DC // AB).
Do đó DADE = DCED (g.c.g).
Suy ra AD = CE (hai cạnh tương ứng) (2)
Từ (1) và (2) ta có AD = BC.
b) Áp dụng kết quả của phần ii) câu a) ở trên cho hình thang cân MNPQ ta có MQ = NP.
Xét hình thang cân MNPQ (MN // QP) có .
Xét DMNQ và DNMP có:
MQ = NP (chứng minh trên);
(chứng minh trên);
MN là cạnh chung.
Do đó DMNQ = DNMP (c.g.c)
Suy ra NQ = MP (hai cạnh tương ứng).
Lời giải bài tập Toán 8 Bài 3: Hình thang – Hình thang cân Chân trời sáng tạo hay khác:
Xem thêm lời giải bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Chân trời sáng tạo
- Giải SBT Toán 8 Chân trời sáng tạo
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải bài tập Toán 8 hay nhất, chi tiết của chúng tôi được biên soạn bám sát sgk Toán 8 Chân trời sáng tạo (Tập 1 & Tập 2) (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST