Giải Toán 9 trang 70 Tập 2 Cánh diều
Với Giải Toán 9 trang 70 Tập 2 trong Bài 1: Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác Toán 9 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 70.
Giải Toán 9 trang 70 Tập 2 Cánh diều
Hoạt động 3 trang 70 Toán 9 Tập 2: Cho tam giác ABC vuông tại A. Gọi O là trung điểm của BC (Hình 7). Đường tròn (O; OB) có phải là đường tròn ngoại tiếp của tam giác ABC hay không?
Lời giải:
Xét tam giác ABC vuông tại A có AO là đường trung tuyến ứng với cạnh huyền BC nên
Mà O là trung điểm của BC nên
Do đó
Vậy đường tròn (O; OB) đi qua các điểm A, B, C của tam giác ABC nên (O; OB) là đường tròn ngoại tiếp của tam giác ABC.
Luyện tập 2 trang 70 Toán 9 Tập 2: Nêu cách sử dụng ê ke để xác định tâm của một đường tròn bất kì khi chưa biết tâm của nó.
Lời giải:
Cách sử dụng ê ke để xác định tâm của một đường tròn bất kì khi chưa biết tâm của nó:
Bước 1. Lấy một điểm M bất kì trên đường tròn.
Bước 2. Đặt đỉnh vuông của ê ke trùng với điểm M.
Bước 3. Kẻ hai đường thẳng đi qua hai cạnh góc vuông của ê kê, hai đường thẳng này cắt đường tròn lần lượt tại hai điểm A, B (khác điểm M).
Bước 4. Nối đoạn thẳng AB, khi đó AB là đường kính của đường tròn.
Bước 5. Lấy O là trung điểm của AB, khi đó O là tâm của đường tròn đã cho.
Thật vậy, ∆MAB vuông tại M nên đường tròn ngoại tiếp tam giác MAB có tâm là trung điểm O của cạnh huyền AB.
Hoạt động 4 trang 70 Toán 9 Tập 2: Cho tam giác đều ABC cạnh a, ba đường trung tuyến AM, BN, CP cắt nhau tại trọng tâm O (Hình 8).
a) AM, BN, CP có là các đường trung trực của tam giác ABC hay không?
b) Điểm O có là tâm đường tròn ngoại tiếp tam giác ABC hay không?
c) Tính AM theo a.
d) Tính OA theo a.
Lời giải:
a) Vì ∆ABC đều nên ba đường trung tuyến AM, BN, CP cũng đồng thời là các đường trung trực của tam giác ABC.
b) Vì ba đường trung trực AM, BN, CP của tam giác ABC cắt nhau tại điểm O nên O là tâm đường tròn ngoại tiếp tam giác ABC.
c) Vì ∆ABC đều nên
Xét ∆ABM vuông tại M, ta có:
d) Tam giác ABC có AM là đường trung tuyến và O là trọng tâm của tam giác.
Do đó
Vậy
Lời giải bài tập Toán 9 Bài 1: Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác hay khác:
- Giải Toán 9 trang 68
- Giải Toán 9 trang 69
- Giải Toán 9 trang 71
- Giải Toán 9 trang 72
- Giải Toán 9 trang 73
- Giải Toán 9 trang 74
Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Cánh diều
- Giải SBT Toán 9 Cánh diều
- Giải lớp 9 Cánh diều (các môn học)
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải sgk Toán 9 Tập 1 & Tập 2 của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Cánh diều (NXB Đại học Sư phạm).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều