Giải Toán 9 trang 91 Tập 1 Cánh diều
Với Giải Toán 9 trang 91 Tập 1 trong Bài 3: Ứng dụng của tỉ số lượng giác của góc nhọn Toán lớp 9 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 91.
Giải Toán 9 trang 91 Tập 1 Cánh diều
Bài 2 trang 91 Toán 9 Tập 1: Để ước lượng chiều cao của một cây trong sân trường, bạn Hoàng đứng ở sân trường (theo phương thẳng đứng), mắt bạn Hoàng đặt tại vị trí C cách mặt đất một khoảng CB = DH = 1,64 m và cách cây một khoảng CD = BH = 6 m. Tính chiều cao AH của cây (làm tròn kết quả đến hàng phần trăm của mét), biết góc nhìn ACD bằng 38° minh hoạ ở Hình 36.
Lời giải:
Xét ∆ACD vuông tại D, ta có:
AD = CD.tan = 6.tan38o ≈4,69 (m).
Ta có AG = AD + DH ≈ 4,69 + 1,64 = 6,33 (m).
Vậy chiều cao AH của cây khoảng 6,33 m.
Bài 3 trang 91 Toán 9 Tập 1: Người ta cần ước lượng khoảng cách từ vị trí O đến khu đất có dạng hình thang MNPQ nhưng không thể đo được trực tiếp, khoảng cách đó được tính bằng khoảng cách từ O đến đường thẳng MN. Người ta chọn vị trí A ở đáy MN và đo được OA = 18 m, (Hình 37). Tính khoảng cách từ vị trí O đến khu đất (làm tròn kết quả đến hàng phần mười của mét).
Lời giải:
Gọi H là chân đường vuông góc kẻ từ O đến MN.
Xét ∆OAH vuông tại H, ta có: OH = OA.sinA = 18.sin44° ≈ 12,5 (m).
Vậy khoảng cách từ vị trí O đến khu đất khoảng 12,5 m.
Bài 4 trang 91 Toán 9 Tập 1: Một mảnh gỗ có dạng hình chữ nhật ABCD với đường chéo AC = 8 dm. Do bảo quản không tốt nên mảnh gỗ bị hỏng phía hai đỉnh B và D. Biết (Hình 38). Người ta cần biết độ dài AB và AD để khôi phục lại mảnh gỗ ban đầu. Độ dài AB, AD bằng bao nhiêu decimét (làm tròn kết quả đến hàng phần mười)?
Lời giải:
Xét ∆ABC vuông tại B, ta có:
AB = AC.cos = 8.cos64o ≈ 3,5 (dm).
BC = AC.sin = 8.sin64o ≈ 7,2 (dm).
Do ABCD là hình chữ nhật nên AD = BC ≈ 7,2 dm.
Vậy AB ≈ 3,5 dm và AD ≈ 7,2 dm.
Bài 5 trang 91 Toán 9 Tập 1: Trên mặt biển, khi khoảng cách AB từ ca nô đến chân tháp hải đăng là 250 m, một người đứng trên tháp hải đăng đó, đặt mắt tại vị trí C và nhìn về phía ca nô theo phương CA tạo với phương nằm ngang Cx một góc là (Hình 39). Tính chiều cao của tháp hải đăng (làm tròn kết quả đến hàng phần mười của mét), biết AB // Cx và độ cao từ tầm mắt của người đó đến đỉnh tháp hải đăng là 3,2 m.
Lời giải:
Vì Cx // AB nên (so le trong).
Xét ∆ABC vuông tại B, ta có: BC = AB.tan = 250.tan32o ≈ 156,2 (m).
Vậy chiều cao của tháp là khoảng 156,2 + 3,2 = 159,4 (m).
Lời giải bài tập Toán 9 Bài 3: Ứng dụng của tỉ số lượng giác của góc nhọn hay khác:
Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:
Toán 9 Bài 1: Đường tròn. Vị trí tương đối của hai đường tròn
Toán 9 Bài 2: Vị trí tương đối của đường thẳng và đường tròn
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Cánh diều
- Giải SBT Toán 9 Cánh diều
- Giải lớp 9 Cánh diều (các môn học)
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải sgk Toán 9 Tập 1 & Tập 2 của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Cánh diều (NXB Đại học Sư phạm).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều