Giải Toán 9 trang 29 Tập 1 Chân trời sáng tạo

Với Giải Toán 9 trang 29 Tập 1 trong Bài 1: Bất đẳng thức Toán 9 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 29.

Giải Toán 9 trang 29 Tập 1 Chân trời sáng tạo

Quảng cáo

Bài 2 trang 29 Toán 9 Tập 1: Hãy chỉ ra các bất đẳng thức diễn tả mỗi khẳng định sau:

a) m lớn hơn 8;

b) n nhỏ hơn 21;

c) x nhỏ hơn hoặc bằng 4;

d) y lớn hơn hoặc bằng 0.

Lời giải:

a) Bất đẳng thức diễn tả m lớn hơn 8 là: m > 8.

b) Bất đẳng thức diễn tả n nhỏ hơn 21 là: n < 21.

c) Bất đẳng thức diễn tả x nhỏ hơn hoặc bằng 4 là: x ≤ 4.

d) Bất đẳng thức diễn tả y lớn hơn hoặc bằng 0 là: y ≥ 0.

Bài 3 trang 29 Toán 9 Tập 1: Hãy cho biết các bất đẳng thức được tạo thành khi:

a) Cộng hai vế của bất đẳng thức m > 5 với −4;

b) Cộng hai vế của bất đẳng thức x2 ≤ y + 1 với 9;

c) Nhân hai vế của bất đẳng thức x > 1 với 3, rồi tiếp tục cộng với 2;

d) Cộng vào hai vế của bất đẳng thức m ≤ −1 với −1, rồi tiếp tục cộng với −7.

Quảng cáo

Lời giải:

a) Cộng hai vế của bất đẳng thức m > 5 với −4 ta được:

m + (–4) > 5 + (–4)

m – 4 > 1.

Vậy bất đẳng thức được tạo thành là m – 4 > 1.

b) Cộng hai vế của bất đẳng thức x2 ≤ y + 1 với 9 ta được:

x2 + 9 ≤ y + 1 + 9

x2 + 9 ≤ y + 10.

Vậy bất đẳng thức được tạo thành là x2 + 9 ≤ y + 10.

c) Nhân hai vế của bất đẳng thức x > 1 với 3, rồi tiếp tục cộng với 2 ta được:

3x > 3 . 1

3x + 2 > 3 . 1 + 2

3x + 2 > 5.

Vậy bất đẳng thức được tạo thành là 3x + 2 > 5.

Quảng cáo

d) Cộng vào hai vế của bất đẳng thức m ≤ −1 với −1, rồi tiếp tục cộng với −7 ta được:

m + (−1) ≤ −1 + (−1)

m − 1 ≤ −2

m − 1 + (−7) ≤ −2 + (−7)

m – 8 ≤ −9

Vậy bất đẳng thức được tạo thành là m – 8 ≤ −9.

Bài 4 trang 29 Toán 9 Tập 1: So sánh hai số x và y trong mỗi trường hợp sau:

a) x + 5 > y + 5;

b) −11x ≤ −11y;

c) 3x – 5 < 3y – 5;

d) −7x + 1 > −7y + 1.

Lời giải:

a) Cộng vào hai vế của bất đẳng thức x + 5 > y + 5 với –5 ta được:

x + 5 + (–5) > y + 5 + (–5

x > y.

Vậy x > y.

Quảng cáo

b) Nhân cả hai vế của bất đẳng thức −11x ≤ −11y với -111  ta được:

-11x .-111 -11y.-111

x ≥ y.

Vậy x ≥ y.

c) Cộng vào hai vế của bất đẳng thức 3x – 5 < 3y – 5 với 5 ta được:

3x – 5 + 5 < 3y – 5 + 5

3x < 3y.

Nhân cả hai vế của bất đẳng thức 3x < 3y với 13  ta được:

3x.13< 3y.13

x < y.

Vậy x < y.

d) Cộng vào hai vế của bất đẳng thức −7x + 1 > −7y + 1 với −1 ta được:

−7x + 1 + (−1) > −7y + 1 + (−1)

−7x > −7y.

Nhân vào hai vế của bất đẳng thức −7x > −7y với -17  ta được:

-7x.-17 < -7y .-17

x < y.

Vậy x< y.

Bài 5 trang 29 Toán 9 Tập 1: Cho hai số a, b thỏa mãn a < b. Chứng tỏ:

a) b – a > 0;

b) a – 2 < b – 1;

c) 2a + b < 3b;

d) –2a – 3 > –2b – 3.

Lời giải:

a) Cộng hai vế của bất đẳng thức a < b với –a, ta được:

a + (–a) < b + (–a)

Suy ra 0 < b – a

Hay b – a > 0.

b) Cộng hai vế của bất đẳng thức a < b với –2, ta được:

a + (–2) < b + (–2) hay a – 2 < b – 2    (1)

Cộng hai vế của bất đẳng thức –2 < –1 cho b, ta được:

–2 + b < –1 + b hay b – 2 < b – 1.        (2)

Từ (1) và (2) suy ra a – 2 < b – 1.

c) Nhân hai vế của bất đẳng thức a < b với 2, ta được: 2a < 2b.

Cộng hai vế của bất đẳng thức 2a < 2b với b, ta được:

2a + b < 2b + b hay 2a + b < 3b.

d) Nhân hai vế của bất đẳng thức a < b với (–2), ta được: –2a > –2b.

Cộng hai vế của bất đẳng thức –2a > –2b với (–3), ta được:

2a + (–3) > –2b + (–3)

–2a – 3 > –2b – 3.

Đố vui trang 29 Toán 9 Tập 1: Tìm lỗi sai trong lập luận sau:

Bạn Trang nhỏ tuổi hơn bạn Mai, bạn Mai nhẹ cân hơn bạn Tín. Gọi a và b lần lượt là số tuổi của bạn Trang và bạn Mai; b và c là số cân nặng của bạn Mai và bạn Tín. Vì a < b và b < c nên theo tính chất bắc cầu ta suy ra a < c. Vậy bạn Trang nhỏ tuổi hơn bạn Tín.

Lời giải:

Lỗi sai: khi b là số tuổi của bạn Mai thì b không thể là số cân nặng của bạn Mai. Vì vậy không thể suy ra bạn Trang nhỏ tuổi hơn bạn Tín.

Lời giải bài tập Toán 9 Bài 1: Bất đẳng thức hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải sgk Toán 9 Tập 1 & Tập 2 của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Chân trời sáng tạo (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Chân trời sáng tạo khác
Tài liệu giáo viên