Giải Toán 9 trang 110 Tập 1 Kết nối tri thức
Với Giải Toán 9 trang 110 Tập 1 trong Luyện tập chung (trang 109, 110) Toán lớp 9 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 110.
Giải Toán 9 trang 110 Tập 1 Kết nối tri thức
Bài 5.29 trang 110 Toán 9 Tập 1: Khi chuyển động, giả sử đầu mũi kim dài của một chiếc đồng hồ vạch nên một đường tròn, kí hiệu là (T1), trong khi đầu mũi kim ngắn vạch nên một đường tròn khác, kí hiệu là (T2).
a) Hai đường tròn (T1) và (T2) có vị trí tương đối như thế nào?
b) Giả sử bán kính của (T1) và (T2) lần lượt là R1 và R2. Người ta vẽ trên mặt đồng hồ một họa tiết hình tròn có tâm nằm cách điểm trục kim đồng hồ một khoảng bằng và có bán kính bằng Hãy cho biết vị trí tương đối của đường tròn (T3) đối với mỗi đường tròn (T1) và (T2). Vẽ ba đường tròn đó nếu R1 = 3 cm, R2 = 2 cm.
Lời giải:
a) Hai đường tròn (T1) và (T2) là hai đường tròn đồng tâm, (T1) chứa (T2).
b) Gọi tâm của (T1) là O, tâm của (T3) là O'.
Ta có:
Suy ra: nên R1 > OO′ + R3 hay OO′ < R1 − R3.
Do đó (T1) đựng (T3).
Ta có: .
Suy ra: nên R2 < OO′ + R3 hay OO′ > R2 − R3
Khi đó R2 − R3 < OO′ < R2 + R3.
Do đó (T2) và (T3) cắt nhau.
Vậy (T1) đựng (T3); (T2) và (T3) cắt nhau.
• Với R1 = 3 cm, R2 = 2 cm, ta có hình vẽ sau:
Bài 5.30 trang 110 Toán 9 Tập 1: Cho đường tròn (O) đường kính AB, tiếp tuyến xx' tại A và tiếp tuyến yy' tại B của (O). Một tiếp tuyến thứ ba của (O) tại điểm P (P khác A và B) cắt xx' tại M và cắt yy' tại N.
a) Chứng minh rằng MN = MA + NB.
b) Đường thẳng đi qua O và vuông góc với AB cắt NM tại Q. Chứng minh rằng Q là trung điểm của đoạn MN.
c) Chứng minh rằng AB tiếp xúc với đường tròn đường kính MN.
Lời giải:
a) MA và MC là hai tiếp tuyến cắt nhau của (O) nên MA = MC.
NB và NC là hai tiếp tuyến cắt nhau của (O) nên NA = NC.
Ta có: MN = MC + NC = MA + NB
b) Gọi K là giao điểm của AN và OQ.
Ta có: BN // OK (vì cùng vuông góc với AB) và O là trung điểm của AB.
Suy ra OK là đường trung bình của tam giác ABN.
Do đó K là trung điểm của AN.
Lại có: AM // QK (vì cùng vuông góc với AB) và K là trung điểm của AN.
Suy ra QK là đường trung bình của tam giác AMN.
Do đó Q là trung điểm của MN.
c) OK là đường trung bình của tam giác ABN nên
QK là đường trung bình của tam giác AMN nên
Suy ra: /span> hay OQ = AQ = BQ.
Do đó O thuộc đường tròn đường kính MN.
Mà OQ vuông góc với AB tại O nên AB là tiếp của đường tròn đường kính MN.
Bài 5.31 trang 110 Toán 9 Tập 1: Cho đường tròn (O) và (O') tiếp xúc ngoài với nhau tại A và cùng tiếp xúc với đường thẳng d tại B và C (khác A), trong đó B ∈ (O) và C ∈ (O′). Tiếp tuyến của (O) tại A cắt BC tại M. Chứng minh rằng:
a) Đường thẳng MA tiếp xúc với (O');
b) Điểm M là trung điểm của đoạn thẳng BC, từ đó suy ra ABC là tam giác vuông.
Lời giải:
a) A thuộc (O') và O'A vuông góc với MA nên MA là tiếp tuyến tại A của (O).
b) MA và MB là hai tiếp tuyến cắt nhau của (O) nên MA = MB.
MA và MC là hai tiếp tuyến cắt nhau của (O) nên MA = MC.
Suy ra MB = MC = MA hay M là trung điểm của BC.
Do đó tam giác ABC vuông tại A.
Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Kết nối tri thức
- Giải SBT Toán 9 Kết nối tri thức
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Giải lớp 9 Cánh diều (các môn học)
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải sgk Toán 9 Tập 1 & Tập 2 của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Kết nối tri thức (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT