Giải Toán 9 trang 20 Tập 1 Kết nối tri thức
Với Giải Toán 9 trang 20 Tập 1 trong Luyện tập chung (trang 19, 20) Toán lớp 9 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 20.
Giải Toán 9 trang 20 Tập 1 Kết nối tri thức
Bài 1.10 trang 20 Toán 9 Tập 1: Cho hai phương trình:
–2x + 5y = 7; (1)
4x – 3y = 7. (2)
Trong các cặp số (2; 0), (1; –1), (–1; 1), (–1; 6), (4; 3) và (–2; –5), cặp số nào là:
a) Nghiệm của phương trình (1)?
b) Nghiệm của phương trình (2)?
c) Nghiệm của hệ gồm phương trình (1) và phương trình (2)?
Lời giải:
a)
• Thay x = 2; y = 0 vào phương trình (1), ta có:
–2x + 5y = (–2) . 2 + 5 . 0 = (−4) + 0 = −4 ≠ 7 nên (2; 0) không phải là nghiệm của phương trình (1).
• Thay x = 1; y = –1 vào phương trình (1), ta có:
–2x + 5y = (–2) . 1 + 5 . (–1) = (–2) – 5 = –7 ≠ 7 nên (1; –1) không phải là nghiệm của phương trình (1).
• Thay x = –1; y = 1 vào phương trình (1), ta có:
–2x + 5y = (–2) . (–1) + 5 . 1 = 2 + 5 = 7 nên (–1; 1) là nghiệm của phương trình (1).
• Thay x = –1; y = 6 vào phương trình (1), ta có:
–2x + 5y = (–2) . (–1) + 5 . 6 = 2 + 30 = 32 ≠ 7 nên (–1; 6) không phải là nghiệm của phương trình (1).
• Thay x = 4; y = 3 vào phương trình (1), ta có:
–2x + 5y = (–2) . 4 + 5 . 3 = –8 + 15 = 7 nên (4; 3) là nghiệm của phương trình (1).
• Thay x = –2; y = –5 vào phương trình (1), ta có:
–2x + 5y = (–2) . (–2) + 5 . (–5) = 4 – 25 = –21 ≠ 7 nên (–2; –5) không phải là nghiệm của phương trình (1).
Vậy cặp số là nghiệm của phương trình (1) là (–1; 1) và (4; 3).
b)
• Thay x = 2; y = 0 vào phương trình (2), ta có:
4x − 3y = 4 . 2 − 3 . 0 = 8 − 0 = 8 ≠ 7 nên (2; 0) không phải là nghiệm của phương trình (2).
• Thay x = 1; y = −1 vào phương trình (2), ta có:
4x − 3y = 4 . 1 − 3 . (−1) = 4 + 3 = 7 nên (1; −1) là nghiệm của phương trình (2).
• Thay x = –1; y = 1 vào phương trình (2), ta có:
4x − 3y = 4 . (–1) − 3 . 1 = −4 − 3 = −7 ≠ 7 nên (−1; 1) không phải là nghiệm của phương trình (2).
• Thay x = −1; y = 6 vào phương trình (2), ta có:
4x − 3y = 4 . (−1) − 3 . 6 = −4 – 18 = –22 ≠ 7 nên (–1; 6) không phải là nghiệm của phương trình (2).
• Thay x = 4; y = 3 vào phương trình (2), ta có:
4x − 3y = 4 . 4 − 3 . 3 = 16 – 9 = 7 nên (4; 3) là nghiệm của phương trình (2).
• Thay x = –2; y = –5 vào phương trình (2), ta có:
4x − 3y = 4 . (–2) − 3 . (–5) = –8 + 15 = 7 nên (–2; –5) là nghiệm của phương trình (2).
Vậy cặp số là nghiệm của phương trình (2) là (1; −1), (4; 3) và (–2; –5).
b) Ta thấy cặp số (4; 3) là nghiệm chung của phương trình (1) và phương trình (2).
Do đó, nghiệm của hệ gồm phương trình (1) và phương trình (2) là cặp số (4; 3).
Bài 1.11 trang 20 Toán 9 Tập 1: Giải các hệ phương trình sau bằng phương pháp thế:
a)
b)
c)
Lời giải:
a) Từ phương trình thứ nhất ta có y = 2x – 1. Thế vào phương trình thứ hai, ta được
x – 2(2x – 1) = –1, tức là x – 4x + 2 = –1, suy ra –3x = –3 hay x = 1.
Từ đó y = 2 . 1 – 1 = 1.
Vậy hệ phương trình đã cho có nghiệm là (1; 1).
b) Chia hai vế của phương trình thứ nhất cho 0,5 và chia hai vế của phương trình thứ hai cho 1,2 ta được:
Từ phương trình thứ nhất ta có y = x – 1. (1)
Thế vào phương trình thứ hai, ta được
x – (x – 1) = 1, tức là x – x + 1 = 1, suy ra 0x = 0. (2)
Ta thấy mọi giá trị của x đều thỏa mãn hệ thức (2).
Với mọi giá trị tùy ý của x, giá trị tương ứng của y được tính bởi (1).
Vậy hệ phương trình đã cho có nghiệm là (x; x – 1) với x ∈ ℝ tùy ý.
c) Từ phương trình thứ nhất ta có x = –3y – 2. Thế vào phương trình thứ hai, ta được
5(–3y – 2) – 4y = 28, tức là –15y – 10 – 4y = 28, suy ra –19y = 38 hay y = –2.
Từ đó x = (–3) . (–2) – 2 = 4.
Vậy hệ phương trình đã cho có nghiệm là (4; –2).
Bài 1.12 trang 20 Toán 9 Tập 1: Giải các hệ phương trình sau bằng phương pháp cộng đại số:
a)
b)
c)
Lời giải:
a) Nhân hai vế của phương trình thứ nhất với 3 và nhân hai vế của phương trình thứ hai với 5, ta được:
Trừ từng vế hai phương trình của hệ mới, ta được 11y = 22 hay y = 2.
Thế y = 2 vào phương trình thứ hai của hệ đã cho, ta có 3x + 2 . 2 = –5 hay 3x = –9, suy ra x = –3.
Vậy hệ phương trình đã cho có nghiệm là (–3; 2).
b) Chia hai vế của phương trình thứ hai cho 0,4 ta được:
Cộng từng vế hai phương trình của hệ mới, ta được 0x + 0y = 13,5. (1)
Do không có giá trị nào của x và y thỏa mãn hệ thức (1) nên hệ phương trình đã cho vô nghiệm.
c) Nhân hai vế của phương trình thứ hai với 10, ta được:
Trừ từng vế hai phương trình của hệ mới, ta được –5y = –2 hay
Thế vào phương trình thứ nhất của hệ đã cho, ta có hay , suy ra
Vậy hệ phương trình đã cho có nghiệm là
Bài 1.13 trang 20 Toán 9 Tập 1: Tìm các hệ số x, y trong phản ứng hóa học đã được cân bằng sau:
4Al + xO2 → yAl2O3.
Lời giải:
Vì số nguyên tử Al và O ở cả hai vế của phương trình phản ứng bằng nhau nên ta có hệ phương trình hay , suy ra .
Vậy các hệ số x, y cần tìm là x = 3; y = 2.
Bài 1.14 trang 20 Toán 9 Tập 1: Tìm a và b sao cho hệ phương trình có nghiệm là (1; –2).
Lời giải:
Hệ phương trình đã cho có nghiệm là (1; –2) nên ta có
Suy ra, hay .
Cộng từng vế hai phương trình của hệ mới, ta được 2a = 8 hay a = 4.
Thế a = 4 vào phương trình thứ nhất của hệ mới, ta có 4 – 2b = 1 hay 2b = 3, suy ra
Vậy a = 4 và
Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Kết nối tri thức
- Giải SBT Toán 9 Kết nối tri thức
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Giải lớp 9 Cánh diều (các môn học)
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải sgk Toán 9 Tập 1 & Tập 2 của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Kết nối tri thức (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT