Lý thuyết: Dấu của nhị thức bậc nhất



Lý thuyết: Dấu của nhị thức bậc nhất

I. ĐỊNH LÍ VỀ DẤU CỦA NHỊ THỨC BẬC NHẤT

1. Nhị thức bậc nhất

Nhị thức bậc nhất đối với x là biểu thức dạng f(x) = ax + b trong đó a, b là hai số đã cho, a ≠ 0.

2. Dấu của nhị thức bậc nhất

Định lí

Nhị thức f(x) = ax + b có giá trị cùng dấu với hệ số a khi x lấy các giá trị trong khoảng (-Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án; +∞), trái dấu với hệ số a khi x lấy giá trị trong khoảng (-∞; -Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án)

x -∞     -Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án     +∞
f(x) = ax + b trái dấu với a     0     cùng dấu với a
Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

II. XÉT DẤU TÍCH, THƯƠNG CÁC NHỊ THỨC BẬC NHẤT

Giả sử f(x) là một tích của những nhị thức bậc nhất. Áp dụng định lí về dấu của nhị thức bậc nhất có thể xét dấu từng nhân tử. Lập bảng xét dấu chung cho tất cả các nhị thức bậc nhất có mặt trong f(x) ta suy ra được dấu của f(x). Trường hợp f(x) là một thương cũng được xét tương tự.

III. ÁP DỤNG VÀO GIẢI BẤT PHƯƠNG TRÌNH

Giải bất phương trình f(x) > 0 thực chất là xét xem biểu thức f(x) nhận giá trị dương với những giá trị nào của x (do đó cũng biết f(x) nhận giá trị âm với những giá trị nào của x), làm như vậy ta nói đã xét dấu biểu thức f(x).

1. Bất phương trình tích, bất phương trình chứa ẩn ở mẫu thức

Ví dụ. Giải bất phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ≥ 1.

Giải.

Ta biến đổi tương đương bất phương trình đã cho

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Xét dấu biểu thức f(x) = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Ta suy ra nghiệm của bất phương trình đã cho là 0 ≤ x < 1.

2. Bất phương trình chứa ẩn trong dấu giá trị tuyệt đối

Ví dụ. Giải bất phương trình |–2x + 1| – x – 3 < 5.

Giải.

Theo định nghĩa giá trị tuyệt đối, ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Do đó, ta xét phương trình trong hai khoảng

a) Với x ≤ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ta có hệ bất phương trình

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hệ này có nghiệm là –7 < x ≤ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án.

b) Với x > Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ta có hệ bất phương trình x > Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hệ này có nghiệm là Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án < x < 3.

Tổng hợp lại tập nghiệm của bất phương trình đã cho là hợp của hai khoảng (–7; Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ] và (Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án; 3).

Kết luận. Bất phương trình đã cho có nghiệm là –7 < x < 3.

Bằng cách áp dụng tính chất của giá trị tuyệt đối ta có thể dễ dàng giải các bất phương trình dạng |f(x)| ≤ a và |f(x)| ≥ a với a > 0 đã cho.

Ta có

|f(x)| ≤ a <=> –a ≤ f(x) ≤ a

|f(x)| ≥ a <=> f(x) ≤ –a hoặc f(x) ≥ a (a > 0)

Chuyên đề Toán 10: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 10 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 10 và Hình học 10.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


bat-dang-thuc-bat-phuong-trinh.jsp