Lý thuyết Phương trình quy về phương trình bậc nhất, bậc hai lớp 10 (hay, chi tiết)



Bài viết Lý thuyết Phương trình quy về phương trình bậc nhất, bậc hai lớp 10 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Phương trình quy về phương trình bậc nhất, bậc hai.

Lý thuyết Phương trình quy về phương trình bậc nhất, bậc hai

(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST

Bài giảng: Bài 2: Phương trình quy về phương trình bậc nhất, bậc hai - Thầy Lê Thành Đạt (Giáo viên VietJack)

I. ÔN TẬP VỀ PHƯƠNG TRÌNH BẬC NHẤT, BẬC HAI

1. Phương trình bậc nhất

Quảng cáo

Cách giải và biện luận phương trình dạng ax + b = 0 được tóm tắt trong bảng sau

Các dạng bài tập Toán 10 (có lời giải)

Khi a ≠ 0 phương trình ax + b = 0 được gọi là phương trình bậc nhất một ẩn.

2. Phương trình bậc hai

Cách giải và công thức nghiệm của phương trình bậc hai được tóm tắt trong bảng sau

Các dạng bài tập Toán 10 (có lời giải)

3. Định lí Vi–ét

Nếu phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 thì

x1 + x2 = -Các dạng bài tập Toán 10 (có lời giải) , x1x2 = Các dạng bài tập Toán 10 (có lời giải).

Ngược lại, nếu hai số u và v có tổng u + v = S và tích uv = P thì u và v là các nghiệm của phương trình

x2 – Sx + P = 0.

II. PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT, BẬC HAI

Có nhiều phương trình khi giải có thể biến đổi về phương trình bậc nhất hoặc bậc hai.

Sau đây ta xét hai trong các dạng phương trình đó.

1. Phương trình chứa ẩn trong dấu giá trị tuyệt đối

Để giải phương trình chứa ẩn trong dấu giá trị tuyệt đối ta có thể dùng định nghĩa của giá trị tuyệt đối hoặc bình phương hai vế để khử dấu giá trị tuyệt đối.

Ví dụ 1. Giải phương trình |x – 3| = 2x + 1. (3)

Giải

Cách 1

a) Nếu x ≥ 3 thì phương trình (3) trở thành x – 3 = 2x + 1. Từ đó x = –4.

Giá trị x = –4 không thỏa mãn điều kiện x ≥ 3 nên bị loại.

b) Nếu x < 3 thì phương trình (3) trở thành –x + 3 = 2x + 1. Từ đó x = Các dạng bài tập Toán 10 (có lời giải).

Giá trị này thỏa mãn điều kiện x < 3 nên là nghiệm.

Kết luận. Vậy nghiệm của phương trình là x = Các dạng bài tập Toán 10 (có lời giải)

Quảng cáo

Cách 2. Bình phương hai vế của phương trình (3) ta đưa tới phương trình hệ quả

(3) => (x – 3)2 = (2x + 1)2

=> x2 – 6x + 9 = 4x2 + 4x + 1

=> 3x2 + 10x – 8 = 0.

Phương trình cuối có hai nghiệm là x = –4 và x = Các dạng bài tập Toán 10 (có lời giải)

Thử lại ta thấy phương trình (3) chỉ có nghiệm là x = Các dạng bài tập Toán 10 (có lời giải)

2. Phương trình chứa ẩn dưới dấu căn

Để giải các phương trình chứa ẩn dưới dấu căn bậc hai, ta thường bình phương hai vế để đưa về một phương trình hệ quả không chứa ẩn dưới dấu căn.

Ví dụ 2. Giải phương trình Các dạng bài tập Toán 10 (có lời giải) = x – 2 (4).

Giải.

Điều kiện của phương trình (4) là x ≥ Các dạng bài tập Toán 10 (có lời giải)

Bình phương hai vế của phương trình (4) ta đưa tới phương trình hệ quả

(4) => 2x – 3 = x2 – 4x + 4

=> x2 – 6x + 7 = 0.

Phương trình cuối có hai nghiệm là x = 3 + √2 và x = 3 – √2 . Cả hai giá trị này đều thỏa mãn điều kiện của phương trình (4), nhưng khi thay vào phương trình (4) thì giá trị x = 3 – √2 bị loại (vế trái dương còn vế phải âm), còn giá trị x= 3 + √2 là nghiệm (hai vế cùng bằng √2 + 1).

Kết luận. Vậy nghiệm của phương trình (4) là x= 3 + √2 .

Quảng cáo

(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

Để học tốt lớp 10 các môn học sách mới:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


phuong-trinh-he-phuong-trinh.jsp


Giải bài tập lớp 10 sách mới các môn học