Giải Vở thực hành Toán 7 trang 84 Tập 2 Kết nối tri thức
Với Giải VTH Toán 7 trang 84 Tập 2 trong Luyện tập chung trang 84,85 Tập 2 Vở thực hành Toán lớp 7 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong VTH Toán 7 trang 84.
Giải Vở thực hành Toán 7 trang 84 Tập 2 Kết nối tri thức
Bài 1 (9.31) trang 84 vở thực hành Toán lớp 7 Tập 2: Chứng minh rằng tam giác có đường trung tuyến và đường cao xuất phát từ cùng một đỉnh trùng nhau là một tam giác cân.
Lời giải:
Ta có AM vừa là đường trung tuyến vừa là đường cao xuất phát từ đỉnh A của tam giác ABC.
Xét hai tam giác vuông ABM và ACM, ta có: AM chung, BM = CM
nên ∆ABM = ∆ACM (hai cạnh góc vuông).
Suy ra AB = AC.
Tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Bài 2 (9.32) trang 84 vở thực hành Toán lớp 7 Tập 2: Cho ba điểm phân biệt thẳng hàng A, B, C. Gọi d là đường thẳng vuông góc với đường thẳng AB tại A. Với điểm M thuộc d, M khác A, vẽ đường thẳng CM. Qua B kẻ đường thẳng vuông góc với đường thẳng CM, cắt d tại N. Chứng minh đường thẳng BM vuông góc với đường thẳng CN.
Lời giải:
Gọi giao của BN và CM là F thì NF ⊥ MC tại F.
Trong tam giác MNC có CA MN (vì d ⊥ AB tại A), NF MC, AC giao với NF tại B nên B là trực tâm của tam giác MNC.
Suy ra BM là đường cao của tam giác MNC hay BM vuông góc với đường thẳng CN.
Bài 3 (9.34) trang 84 vở thực hành Toán lớp 7 Tập 2: Cho tam giác ABC. Kẻ tia phân giác At của góc tạo bởi tia AB và tia đối của tia AC. Chứng minh rằng nếu đường thẳng chứa tia At song song với đường thẳng BC thì tam giác ABC cân tại A.
Lời giải:
Gọi tia đối của tia AC là Am. Ta có tia At chia góc mAB thành hai góc và ,
Vì At // BC nên ta có (hai góc đồng vị) và (hai góc so le trong).
Suy ra . Vậy tam giác ABC là tam giác cân tại đỉnh A.
Bài 4 (9.35) trang 84 vở thực hành Toán lớp 7 Tập 2: Kí hiệu SABC là diện tích tam giác ABC. Gọi G là trọng tâm của tam giác ABC, M là trung điểm của BC.
a) Chứng minh SGBC = SABC.
Gợi ý. Sử dụng GM = AM để chứng minh SGBM = SABM, SGCM = SACM.
b) Chứng minh SGCA = SGAB = SABC.
Nhận xét. Từ bài tập trên ta có: SGBC = SGCA = SGAB = SABC điều này giúp ta cảm nhận tại sao có thể đặt thăng bằng miếng bìa hình tam giác trên giá nhọn đặt tại trọng tâm của tam giác đó.
Lời giải:
a) Ta có SGBC = SBGM + SCGM.
Vì G là trọng tâm của tam giác ABC nên GM = AM,
suy ra SBGM = SBAM, SCGM = SACM.
Suy ra SGBC = SBGM + SCGM = SBAM + SACM = (SBAM + SACM) = SABC.
b) Gọi N, P lần lượt là trung điểm của AC và AB.
Tương tự GN = BN nên
SGAC = SCGN + SAGN = SBCN + SABN = (SBCN + SABN) = SABC.
Vì GP = CP nên
SGAB = SBGP + SAGP = SBCP + SAPC = (SBCP + SAPC) = SABC.
Vậy SGBC = SGCA = SGAB = SABC.
Lời giải Vở thực hành Toán lớp 7 Luyện tập chung trang 84,85 Tập 2 Kết nối tri thức hay khác:
Xem thêm lời giải Vở thực hành Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
- VTH Toán 7 Bài tập cuối chương 9
- VTH Toán 7 Bài 36: Hình hộp chữ nhật và hình lập phương
- VTH Toán 7 Luyện tập trang 94,95 Tập 2
- VTH Toán 7 Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác
- VTH Toán 7 Luyện tập trang 100,101 Tập 2
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải VTH Toán lớp 7 hay nhất, chi tiết được biên soạn bám sát sách Vở thực hành Toán 7 Tập 1, Tập 2 bộ sách Kết nối tri thức (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT