Giải các hệ phương trình sau bằng phương pháp Gauss trang 14 Chuyên đề Toán 10

Giải Chuyên đề Toán 10 Bài 1: Hệ phương trình bậc nhất ba ẩn

Bài 1.3 trang 14 Chuyên đề Toán 10: Giải các hệ phương trình sau bằng phương pháp Gauss:

a) 2xyz=2x+y=3xy+z=2;

b) 3xyz=2x+2y+z=5x+y=2;

c) x3yz=62xy+2z=64x7y=6;

d) x3yz=62xy+2z=64x7y=3;

e) 3xy7z=24xy+z=115xy9z=22;

f) 2x3y4z=25xy2z=37x4y6z=1.

Kiểm tra lại kết quả tìm được bằng cách sử dụng máy tính cầm tay.

Quảng cáo

Lời giải:

a) 2xyz=2x+y=3xy+z=22xyz=2x+y=33x2y=4

2xyz=2x+y=35y=52xyz=2x+1=3y=1

2.21z=2x=2y=1z=1x=2y=1.

Vậy nghiệm của hệ phương trình là (x ; y ; z) = (2; 1; 1).

b) 3xyz=2x+2y+z=5x+y=23xyz=24x+y=7x+y=2

3xyz=24x+y=75y=153xyz=24x+3=7y=3

3.13z=2x=1y=3z=2x=1y=3.

Vậy nghiệm của hệ phương trình là (x ; y ; z) = (1; 3; –2).

c) x3yz=62xy+2z=64x7y=6x3yz=64x7y=64x7y=6

x3yz=64x7y=6

Rút x theo y từ phương trình thứ hai của hệ ta được x = 7y-64 . Rút z theo x và y từ phương trình thứ nhất của hệ ta được z = x – 3y + 6 = 7y-64-3y+6=-5y+184. Vậy hệ đã cho có vô số nghiệm và tập nghiệm của hệ là S = { 7y-64;y,-5y+184| y ∈ }

d) x3yz=62xy+2z=64x7y=3x3yz=64x7y=64x7y=3.

Từ hai phương trình cuối, suy ra –6 = 3, điều này vô lí. Vậy hệ đã cho vô nghiệm.

e) 3xy7z=24xy+z=115xy9z=223xy7z=2y31z=255xy9z=22

3xy7z=2y31z=258y62z=563xy7z=2y31z=25186z=144

3xy7z=2y31.2431=25z=2431x=8731y=1z=2431.

Vậy nghiệm của hệ phương trình là (x ; y ; z) = 8731;1;2431.

f) 2x3y4z=25xy2z=37x4y6z=12x3y4z=213y16z=167x4y6z=1

2x3y4z=213y16z=1613y16z=162x3y4z=213y16z=16.

Rút y theo z từ phương trình thứ hai của hệ ta được y = 16-16z13.

Rút x theo y và z từ phương trình thứ nhất của hệ ta được:

3y+4z22=3.1616z13+4z22

=36z+2226=18z+1113.

Vậy hệ đã cho có vô số nghiệm và tập nghiệm của hệ là S = {18z+1113;1616z13;z | y ∈ }.

Quảng cáo


Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 sách mới các môn học
Tài liệu giáo viên